气相/凝聚炸药爆轰合成的碳包铜纳米颗粒特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of carbon encapsulated copper nanoparticles based on gaseous/condensed explosives detonation
  • 作者:闫鸿浩 ; 张潇飞 ; 赵碧波 ; 赵铁军 ; 李晓杰
  • 英文作者:Yan Honghao;Zhang Xiaofei;Zhao Bibo;Zhao Tiejun;Li Xiaojie;Institute of Engineering Mechanics,Dalian University of Technology;
  • 关键词:气相爆轰 ; 凝聚炸药爆轰 ; 碳包铜纳米颗粒 ; 特征对比
  • 英文关键词:gaseous detonation;;condensed explosives detonation;;carbon encapsulated copper nanoparticles;;properties comparison
  • 中文刊名:QJGY
  • 英文刊名:High Power Laser and Particle Beams
  • 机构:大连理工大学工程力学系;
  • 出版日期:2017-06-19 16:41
  • 出版单位:强激光与粒子束
  • 年:2017
  • 期:v.29;No.242
  • 基金:国家自然科学基金项目(11672068)
  • 语种:中文;
  • 页:QJGY201708012
  • 页数:5
  • CN:08
  • ISSN:51-1311/O4
  • 分类号:74-78
摘要
采用凝聚炸药爆轰和气相爆轰分别制备碳包铜纳米颗粒,并利用XRD,Raman和TEM等方法对合成纳米产物进行对比分析。其中凝聚炸药爆轰法以柠檬酸铜干凝胶、油酸和黑索金为原料按照一定比例配成爆炸源,在氮气的保护氛围中引爆;而气相爆轰法以乙酰丙酮铜为原料,分别以H2和O2,H2和空气为爆炸源,在负氧条件下引爆。通过XRD,Raman和TEM分析结果表明,两类爆轰法均可得到分散性良好的碳包覆铜纳米颗粒,碳壳石墨化程度较高。气相爆轰可以合成10nm以下的纳米晶粒,而凝聚炸药爆轰合成的晶粒尺寸在20~40nm,且存在较多空壳结构;气相爆轰产物其碳壳尺寸在2~3nm,凝聚炸药爆轰产物其碳壳尺寸在2~5nm。
        In order to compare the properties of nanoparticles synthesized from gaseous detonation and condensed explosives detonation,we carried out the investigation utilizing XRD,Raman and TEM methods.Condensed explosives detonation used cupric citrate xerogel as material,and detonated in the protection of nitrogen atmosphere;gaseous detonation used acetylacetone copper as material,detonated under the negative oxygen conditions with the explosion sources of H2 and O2,H2 and air.The results of XRD,Raman and TEM analyses show that the carbon encapsulated copper nanoparticles with good dispersibility can be obtained by both two detonation methods,and the degree of graphitization of carbon shell is high.Gaseous detonation can synthesize nanocrystals below 10 nm,and the size of nanocrystals by condensed explosives detonation is between 20-40 nm,and there are more empty shells.The gaseous detonation product has a carbon shell size between 2and 3nm,and the condensed explosive detonation product has a carbon shell size between 2and 5nm.
引文
[1]Huaman J L C,Sato K,Kurita S,et al.Copper nanoparticles synthesized by hydroxyl ion assisted alcohol reduction for conducting ink[J].Chemistry of Materials,2011,21(20):7062-7069
    [2]王晓丽,徐滨士,许一,等.纳米铜润滑油添加剂的摩擦磨损特性及其机理研究[J].摩擦学学报,2007,27(3):235-240.(Wang Xiaoli,Xu Binshi,Xu Yi,et al.Study on friction and wear behavior and mechanism of nano-Cu additive in lubrication oils.Tribology,2007,27(3):235-240)
    [3]Dong L,Tao X,Zhang L,et al.Nanorobotic spot welding:controlled metal deposition with attogram precision from copper-filled carbon nanotubes[J].Nano Lett,2007,7(1):58-63.
    [4]Li Hong,Shan Dan,Gao Deyu,et al.Preparation technology of metal nanocopper[J].Chemical Engineer,2007,21(12):23-25.
    [5]Szczytko J,Osewski P,Bystrzejewski M,et al.Carbon-encapsulated magnetic nanoparticles based on Fe,Mn,and Cr for spintronics applications[J].Acta Physica Polonica A,2007,112(2):305-310.
    [6]Huber D L.Synthesis,properties,and applications of iron nanoparticles[J].Small,2005,1(5):482-501.
    [7]Park K,Lee D,Rai A,et al.Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry[J].The Journal of Physical Chemistry B,2005,109(15):7290-7299.
    [8]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
    [9]Ruoff R S,Lorents D C,Chan B.Single-crystal metals encapsulated in carbon nanoparticles[J].Science,1993,259(5093):346-348.
    [10]Tomita M,Saito Y,Hayashi T.LaC2encapsulated in graphite nanoparticle[J].Jpn J Appl Phys,1993,32(2):L280-282.
    [11]Wang S,Huang X,He Y,et al.Synthesis,growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene[J].Carbon,2012,50(6):2119-2125.
    [12]Wang S,He Y,Liu X,et al.Novel C/Cu sheath/core nanostructures synthesized via low-temperature MOCVD[J].Nanotechnology,2011,22(40):405-704.
    [13]Liu X G,Ou Z Q,Geng D Y,et al.Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles[J].Carbon,2010,48(3):891-897.
    [14]Bonard J M,Supapan S,Wegrowe J E,et al.Varying the size and magnetic properties of carbon-encapsulated cobalt particles[J].Chemical Physics Letters,2001,343(3/4):251-257.
    [15]Si P Z,Zhang Z D,Geng D Y,et al.Synthesis and characteristics of carbon-coated iron and nickel nanocapsules produced by arc discharge in ethanol vapor[J].Carbon,2003,41(2):247-251.
    [16]You T,Niwa O,Tomita M,et al.Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphited-like carbon films prepared by RF sputtering method[J].Electrochemistry Communications,2002,4(5):468-471.
    [17]Zhang S,Bui X L,Fu Y Q.Magnetron-sputtered nc-TiC/a-C(Al)tough nanocopsite coatings[J].Thin Solid Films,2004,467(1/2):261-266.
    [18]Liu C H,Peng W,Sheng L M.Carbon and boron nanoparticles by pulsed-laser vaporization of boron carbide in liquids[J].Carbon,2001,39(1):144-147.
    [19]Park J B,Jeong S H,Jeong M S,et al.Synthesis of carbon-encapsulated magnetic nanoparticles by pulsed laser irradiation of solution[J].Carbon,2008,46(11):1369-1377.
    [20]Ioannis P,Valerie C,Shik C T.Syntheses of carbon encapsulated magnetic Fe Ni nanoparticle via decompositions of methane and benzene[J].Carbon,2006,44(4):820-823.
    [21]Tomita S,Hikita M,Fujii M.A new and simple method for thin graphitic coating of magnetic metal nanoparticles[J].Chemical Physics Letters,2000,316(5/6):361-364.
    [22]袁华堂,冯艳,乔林军,等.石墨包覆对含Ti,Zr镁基合金性能的影响[J].电源技术,2004,28(4):216-219.(Yuan Huatang,Feng Yan,Qiao Linjun,et al.Effect on the properties of Mg-based hydrogen storage alloys contained with Ti,Zr and surface coated by graphite.Chinese Journal of Power Sources,2004,28(4):216-219)
    [23]Wu W Z,Zhu Z P,Liu Z Y.Preparation of carbon-encapsulated iron carbide nanoparticles by an explosion method[J].Carbon,2003,41(2):317-321.
    [24]Yi Lu,Zhu Zhenping,Liu Zhenyu.Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene[J].Carbon,2005,43(2):369-374.
    [24]吕春绪.工业炸药理论[M].北京:兵器工业出版社,2003.(Lüchunxu.Theory of industrial explosives.Beijing:The Publishing House of Ordnance Industry,2003)
    [25]Yan Honghao,Wu Linsong,Li Xiaojie,et al.Detonation synthesis of SnO2nanoparticles in gaseous phase method[J].Rare Metal Materials&Engineering,2013,42(7):1325-1327.
    [26]吴娟霞,徐华,张锦.拉曼光谱在石墨烯结构表征中的应用[J].化学学报,2014,72(3):301-318.(Wu Juanxia,Xu Hua,Zhang Jin.Raman spectroscopy of graphene.Acta Chimica Sinica,2014,72(3):301-318)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700