集输系统机械复合管紧密度性能探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on the Tightness of Mechanical Composite Pipe in Gathering System
  • 作者:陈俊文 ; 顾泓 ; 王磊 ; 刘玉峰 ; 李天雷
  • 英文作者:Chen Junwen;Gu Hong;Wang Lei;Liu Yufeng;Li Tianlei;China Petroleum Engineering & Construction Corp.Southwest Company;Tarim Oilfield Company Kuqa Oil & Gas Development Department;
  • 关键词:机械复合管 ; 紧密度 ; 适用工况 ; 热膨胀
  • 英文关键词:Mechanical composite pipe;;Tightness;;Applicable condition;;Thermal expansion
  • 中文刊名:TRYS
  • 英文刊名:Natural Gas and Oil
  • 机构:中国石油工程建设有限公司西南分公司;塔里木油田分公司库车油气开发部;
  • 出版日期:2017-12-15
  • 出版单位:天然气与石油
  • 年:2017
  • 期:v.35
  • 基金:中国石油天然气集团公司重点工程资助项目(S 2016-103 D)
  • 语种:中文;
  • 页:TRYS201706005
  • 页数:6
  • CN:06
  • ISSN:51-1183/TE
  • 分类号:24-29
摘要
机械复合管具备良好的抗腐蚀性能和经济性能,具有广阔的应用前景。目前,在集输系统中,机械复合管选用条件主要考虑为运行温度、压力和介质特性对内衬抗高温氯离子开裂风险的影响。为保证机械复合管应用效果可靠,现行制造规范进行了基管-内衬紧密度规定。实际投产后,管道运行状态复杂,但现行设计规范尚未量化保证机械复合管紧密度的具体指标。为进一步保证高温、高压集输系统合理使用机械复合管,有必要深入探讨在运机械复合管适用工况。基于机械复合管制造阶段紧密度测试方法和指标,结合钢制管道强度理论和自然锚固规律,推导了制造和运行情况下内衬不锈钢的应力计算式,探索性地提出了机械复合管紧密度校核方法,并结合算例进行了探讨与分析。结果表明,机械复合管在制造阶段的坍塌试验产生的内衬轴向压应力较高,超过屈服极限,导致试验后机械复合管紧密度大幅降低;为保证机械复合管紧密度,运行状态下内衬轴向压应力不应超过坍塌试验工况;操作-安装温度差和弹性敷设是影响机械复合管紧密度的主要因素。研究成果为油气集输系统机械复合管的精细化设计提供了一定的参考。
        Mechanical composite pipe with good corrosion resistance and economic performance has a broad application prospect. At present,the selection of composite pipe condition in gathering system shall consider the impact of operating temperature,pressure and medium on the cracking risks of lining chloride of high temperature resistance. In order to ensure the reliability of mechanical composite pipe,the basic pipe-lined tightness requirement is specified in the existing manufacturing specifications. During the real production,the pipeline running state is complex,but the current design specifications have not yet quantified to ensure the mechanical composite pipe tightness. To further ensure that the mechanical composite pipe is properly used in gathering system with high temperature and high pressure,it is necessary to further explore the mechanical composite pipe in the applicable conditions. Based on the theory andindex of compactness of mechanical composite pipe at manufacturing stage,combined with the theory of steel pipe strength and natural anchorage law,the stress calculation formula of stainless steel lining under manufacturing and operation is deduced,and the tightness checking method is proposed. The results show that the axial compressive stress of the lining of the mechanical composite pipe is higher than the yield limit,which leads to the decrease of the mechanical composite pipe tightness after the test. The axial compressive stress of the lining should not exceed the operating condition of collapse test; temperature difference between operation and installation and elastic laying are the main factors limiting the use of mechanical composite pipe. The results of this paper provide reference for the fine design of mechanical composite pipe for gathering system.
引文
[1]钟强,赵国仙,倪崇江,等.某海底输送管线腐蚀失效分析[J].天然气与石油,2016,34(1):89-93.Zhong Qiang,Zhao Guoxian,Ni Chongjiang,et al.Analysis on Corrosion Failure in Certain Submarine Pipeline[J].Natural Gas and Oil,2016,34(1):89-93.
    [2]鲜宁,孙素芬,姜放,等.CO2气田开发的腐预测与控制措施[J].天然气与石油,2011,29(2):62-66.Xian Ning,Sun Sufen,Jiang Fang,et al.Corrosion Prediction and Control Measure in CO2Gas Field Development[J].Natural Gas and Oil,2011,29(2):62-66.
    [3]牙亚萌,张胜利,李唯,等.高温、含H2S环境的设备内壁陶瓷金属涂层防腐技术[J].天然气与石油,2016,34(2):72-77.Ya Yameng,Zhang Shengli,Li Wei,et al.Anticorrosion of Metal Ceramic Coating on the Inner Wall of Equipments under High Temperature and H2S[J].Natural Gas and Oil,2016,34(2):72-77.
    [4]袁青,刘音,毕研霞,等.油气田开发中CO2腐蚀机理及防腐方法研究进展[J].天然气与石油,2015,33(2):78-81.Yuan Qing,Liu Yin,Bi Yanxia,et al.Research on CO2Corrosion and Corrosion Control Method in Oil and Gas Field Development[J].Natural Gas and Oil,2015,33(2):78-81.
    [5]谢勇,曹胜,杨专钊,等.内衬双金属复合管紧密度测量及影响因素[J].焊管,2014,37(3):23-27.Xie Yong,Cao Sheng,Yang Zhuanzhao,et al.Tightness Measurement and Influencing Factors of Bimetal Composite Pipe with Lining[J].Welded Pipe and Tube,2014,37(3):23-27.
    [6]王纯,毕宗岳,张万鹏,等.国内外双金属复合管研究现状[J].焊管,2015,38(12):7-12.Wang Chun,Bi Zongyue,Zhang Wanpeng,et al.Research Status on Double-Metal Composite Pipe at Home and Abroad[J].Welded Pipe and Tube,2015,38(12):7-12.
    [7]裴中涛,李剑敏,闻步正,等.双金属复合管的弹塑性分析及有限元模拟[J].化工机械,2011,38(6):749-752.Pei Zhongtao,Li Jianmin,Wen Buzheng,et al.Elastoplasticity Analysis and Finite Element Simulation of Thermometal Composite Tubes[J].Chemical Engineering&Machinery,2011,38(6):749-752.
    [8]王永飞,赵升吨,张晨阳,等.双金属复合管成形工艺研究现状及发展[J].锻压装备与制造技术,2015,50(3):84-89.Wang Yongfei,Zhao Shengdun,Zhang Chenyang,et al.Research Status and Development of Forming Technology for Bi-Metal-Lined Pipe[J].China Metalforming Equipment&Manufacturing Technology,2015,50(3):84-89.
    [9]魏帆,张燕飞,郭霖,等.机械式复合管结合强度的检测与控制[J].焊管,2015,38(2):32-36.Wei Fan,Zhang Yanfei,Guo Lin,et al.Inspection and Control of Bonding Strength for Mechanical Composite Pipe[J].Welded Pipe and Tube,2015,38(2):32-36.
    [10]陈浩,顾元国,江胜飞,等.20 G/316 L双金属复合管失效的原因[J].腐蚀与防护,2015,36(12):1194-1197.Chen Hao,Gu Yuanguo,Jiang Shengfei,et al.Failure Reasons for 20 G/316 L Double Metal Composite Pipe[J].Corrosion and Protection,2015,36(12):1194-1197.
    [11]李发根,孟繁印,郭霖,等.双金属复合管焊接技术分析[J].焊管,2014,37(6):40-43.Li Fagen,Meng Fanyin,Guo Lin,et al.Analysis of Welding Technology about Bimetal-Lined Pipe[J].Welded Pipe and Tube,2014,37(6):40-43.
    [12]杨笿,曹晶晶,袁鹏斌,等.316 L/X 65双金属复合管管端根焊工艺研究[J].焊管,2015,38(12):40-45.Yang Pin,Cao Jingjing,Yuan Pengbin,et al.Research on Root Welding Process of 316 L/X65 Double-Metal Composite Pipe End[J].Welded Pipe and Tube,2015,38(12):40-45.
    [13]中华人民共和国住房和城乡建设部.气田集输设计规范:GB 50349-2015[S].北京:中华人民共和国住房和城乡建设部,2015:31.Ministry of Housing and Urban-Rural Development of the People's Republic of China.Code for Design of Gas Gathering and Transportation System in Gas Field:GB 50349-2015[S].Beijing:Ministry of Housing and Urban-Rural Development of the People's Republic of China,2015:31.
    [14]石油管材专业标准化技术委员会.内覆或衬里耐腐蚀合金复合钢管规范:SY/T 6623-2012[S].北京:石油管材专业标准化技术委员会,2012:26.Petroleum Pipe Material Standardization Technical Committees.Specification for CRA Clad or Lined Steel Pipe:SY/T 6623-2012[S].Beijing:Petroleum Pipe Material Standardization Technical Committees,2012:26.
    [15]陈俊文,徐境,邱星栋.等.埋地管道自然锚固规律研究[J].天然气与石油,2015,33(3):11-14.Chen Junwen,Xu Jing,Qiu Xingdong,et al.Study on Natural Anchorage Rule of Buried Pipeline[J].Natural Gas and Oil,2015,33(3):11-14.
    [16]黄坤,吴世娟,卢泓方,等.沿坡敷设输气管道应力分析[J].天然气与石油,2012,30(4):1-4.Huang Kun,Wu Shijuan,Lu Hongfang,et al.Analysis on Stress of Gas Pipeline Laid along Slope[J].Natural Gas and Oil,2012,30(4):1-4.
    [17]孙蔺,余汉成,李沫,等.长输高陡坡段管道应力浅析[J].天然气与石油,2013,31(4):5-7.Sun Lin,Yu Hancheng,Li Mo,et al.Analysis on Stress in Long-Distance Pipelines Located in High Steep Slopes[J].Natural Gas and Oil,2013,31(4):5-7.
    [18]吴晓南,鲜燕,刘源海,等.清管过程中隧道内输气管道应力分析[J].天然气与石油,2012,30(2):1-3.Wu Xiaonan,Xian Yan,Liu Yuanhai,et al.Analysis on Gas Pipeline Stress in Tunnel during Pigging[J].Natural Gas and Oil,2012,30(2):1-3.
    [19]沙晓东,陈晓辉,黄坤,等.输气管道应力影响因素分析[J].天然气与石油,2013,31(1):1-4.Sha Xiaodong,Chen Xiaohui,Huang Kun,et al.Analysis on Factors Affecting Stress in Gas Pipeline[J].Natural Gas and Oil,2013,31(1):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700