合成气和硫化氢气氛下Rh表面扩散的密度泛函理论研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Syngas and H_2S Atmosphere on Rh Surface*Diffusion:a DFT Study
  • 作者:郝晓斌 ; 章日光 ; 凌丽霞 ; 王宝俊
  • 英文作者:HAO Xiaobin;ZHANG Riguang;LING Lixia;WANG Baojun;Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province,Taiyuan University of Technology;
  • 关键词:Rh表面扩散 ; 一氧化碳 ; 氢气 ; 硫化氢 ; 密度泛函理论
  • 英文关键词:Rh surface diffusion;;CO;;H2;;H2S;;DFT
  • 中文刊名:MTZH
  • 英文刊名:Coal Conversion
  • 机构:太原理工大学煤科学与技术教育部和山西省重点实验室;
  • 出版日期:2019-05-13
  • 出版单位:煤炭转化
  • 年:2019
  • 期:v.42;No.169
  • 基金:Project(21736007)Supported by the Key Projects of National Natural Science Foundation of China,Projects(21476155,21776193);; Supported by the National Natural Science Fourdation of China
  • 语种:英文;
  • 页:MTZH201903006
  • 页数:9
  • CN:03
  • ISSN:14-1163/TQ
  • 分类号:43-51
摘要
为了探究Rh催化剂的烧结现象及提高催化剂的稳定性,采用密度泛函理论研究了不同温度下CO,H_2和H_2S气氛下Rh物种在Rh(111)表面上的扩散速率。结果表明:在CO和H2气氛下,随着温度的升高,Rh-CO和Rh-H复合体的迁移速率增大,CO和H_2加速了Rh表面物种的扩散,进而促进了Rh的烧结;在H2S气氛下,Rh-S复合体的形成能是负值,Rh表面上非常容易形成Rh-S复合体。尽管H_2S的浓度仅为几个10-6数量级,但是Rh-S复合体的迁移速率远远大于Rh团簇、Rh-CO和Rh-H复合体的迁移速率。因此,Rh催化剂对H2S极其敏感,表现出较低的耐硫性。
        To understand the sintering and improve the stability of Rh catalyst,the diffusion of Rh species on Rh(111)surface under CO,H_2 and H_ S atmospheres at different temperatures were investigated using density functional theory.Under CO and H_2 atmosphere,as the temperature increases,the diffusivity of Rh-CO and Rh-H complex becomes faster than that of Rh adatom,which indicates that CO and H_2 can accelerate Rh surface diffusion and promotes the sintering of Rh catalyst.In H_2S atmosphere,the negative formation free energies of Rh-S complexes indicate that Rh-S complexes are easy to form on Rh(111)surface.Compared with that of Rh species,Rh-CO and Rh-H complex,the diffusivity of RhS complex is very large at 10-6 level of H_2S.Therefore,Rh catalyst is extremely sensitive to the S-containing species and has lower sulfur tolerance.
引文
[1]PERSSON K,PFEFFERLE Lisa D,WILLIAM S,et al.Stability of Palladium-based Catalysts During Catalytic Combustion of Methane:the Influence of Water[J].Applied Catalysis B:Environmental,2007,74(3/4):242-250.
    [2]SIRACUSANO S,HODNIK N,JOVANOVIC P,et al.ARICAntonino Salvatore,New Insights into the Stability of a High Performance Nanostructured Catalyst for Sustainable Water Electrolysis[J].Nano Energy,2017,40:618-632.
    [3]SPRI C,KWAN Jason Tai Hong,BONAKDARPOUR A,et al.The Stability Challenges of Oxygen Evolving Catalysts:Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation[J].Angewandte Chemie,2017,56(22):5994-6021.
    [4]BARTHOLOMEW C H.Mechanisms of Catalyst Deactivation[J].Applied Catalysis A:General,2001,212(1/2):17-60.
    [5]GOODMAN E D,SCHWALBE J A,CARGNELLO M.Mechanistic Understanding and the Rational Design of Sinter-resistant Heterogeneous Catalysts[J].ACS Catalysis,2017,7(10):7156-7173.
    [6]SATTERFIELD Ch N.Heterogeneous Catalysis in Industrial Practice[M].2nd ed.New York:McGraw-Hill,1991.
    [7]HEO Iljeong,YOON Dalyoung,CHO Byong K,et al.Activity and Thermal Stability of Rh-based Catalytic System for an Advanced Modern TWC[J].Applied Catalysis B:Environmental,2012,121-122(13):75-87.
    [8]FORCE C,PANIEGO A,RUIZ,et al.Metal Sintering in Rh/Al2O3Catalysts Followed by HREM,1 HNMR,and H2Chemisorption[J].Langmuir,2001,17(9):2720-2726.
    [9]KANG Sungbong,HAN Seokjun,NAM Sungbang,et al.Effect of Aging Atmosphere on Thermal Sintering of Modern Commercial TWCs[J].Topics in Catalysis,2013,56(1/8):298-305.
    [10]MACHIDA M,MINAMI S,IKEUE K,et al.Rhodium Nanoparticle Anchoring on AlPO4for Effcient Catalyst Sintering Suppression[J].Chemistry Materials,2014,26(19):5799-5805.
    [11]MORIKAWA A,TANABE T,HATANAKA M,et al.Inhibition of Rh Sintering and Improved Reducibility of Rh on ZrO2Nanocomposite with an Al2O3Diffusion Barrier[J].Applied Catalysis A:General,2015,493(5):33-39.
    [12]WAN Jie,CAO Yidan,RAN Rui,et al.Regeneration of Sintered Rh/ZrO2Catalysts via Rh Re-dispersion and Rh-ZrO2Interaction[J].Science China Technological Sciences,2016,59(7):1023-1028.
    [13]TANABE Toshitaka,MORIKAWA Akira,HATANAKA Miho,et al.The Interaction between Supported Rh-and Nd2O3-Enriched Surface Layer on ZrO2for Rh Sintering Suppression[J].Catalysis Today,2012,184(1):219-226.
    [14]SEHESTED J,GELTEN J A P,REMEDIAKIS I N,et al.Sintering of Nickel Steam-reforming Catalysts:Effects of Temperature and Steam and Hydrogen Pressures[J].Journal of Catalysis,2004,223(2):432-443.
    [15]HORCH S,LORENSEN H T,HELVEG S,et al.Enhancement of Surface Self-diffusion of Platinum Atoms by Adsorbed Hydrogen[J].Nature,1999,398(6723):134-136.
    [16]RASMUSSEN D B,JANSSENS T V W,TEMEL B,et al.The Energies of Formation and Mobilities of Cu Surface Species on Cu and ZnO in Methanol and Water Gas Shift Atmospheres Studied by DFT[J].Journal of Catalysis,2012,293:205-214.
    [17]NAKAO Kazuhide,ISHIMOTO Takayoshi,KOYAMA Michihisa.Density Functional Theory Study for Ni Diffusion on Ni(111)Surface Under Solid Oxide Fuel Cell Operating Condition[J].Journal of Physical Chemistry C,2016,120(30):16641-16648.
    [18]SHEN Mingming,LIU Dajiang,JENKS C J,et al.Accelerated Coarsening of Ag Adatom Islands on Ag(111)due to Trace Amounts of S:Mass-transport Mediated by Ag-S Complexes[J].The Journal of Chemical Physics,2009,130(094701):1-13.
    [19]KRESSE G,FURTHMüLLER J.Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set[J].Physical Review B:Condensed Matter,1996,54(16):11169-11186.
    [20]KRESSE G,FURTHMüLLER J.Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set[J].Computational Materials Science,1996,6(1):15-50.
    [21]PERDEW J P,BURKE K,ERNZERHOF M.Generalized Gradient Approximation Made Simple[J].Physical Review Letter,1996,77:3865-3868.
    [22]WHITE J A,BIRD D M.Implementation of Gradient-corrected Exchange-correlation Potentials in Car-parrinello Total-energy Calculations[J].Physical Review B:Condensed Matter,1994,50(7):4954-4957.
    [23]WANG Jenghan,LEE C S,LIN M C.Mechanism of Ethanol Reforming:Theoretical Foundations[J].Journal of Physical Chemistry C,2009,113(16):6681-6688.
    [24]SHEPPARD D,XIAO Pengmao,CHEMELEWAKI W,et al.A Generalized Solid State Nudged Elastic Band Method[J].The Journal of Chemical Physics,2012,136(7):(074103)1-8.
    [25]SHEPPARD D,RYE T,HENKELMAN G.Optimization Methods for Finding Minimum Energy Paths[J].The Journal of Chemical Physics,2008,128(12):(134106)1-10.
    [26]DALTON A S,SEEBAUER E G.An Improved Theory for Temperature-dependent Arrhenius Parameters in Mesoscale Surface Diffusion[J].Surface Science,2007,601(3):728-734.
    [27]VINEYARD G H.Frequency Factors and Isotope Effects in Solid State Rate Processes[J].Journal of Physics and Chemistry of Solids,1957,3(1/2):121-127.
    [28]MILLS B,DOUGLAS P,LEAK G M.Surface Self-diffusion of Nickel[J].Transactions of Metallurgical Society of AIME,1969,245:1291-1296.
    [29]AZZERRI N,COLOMBO R L.Surface Diffusion Measurements in Nickel Using a Modified Relaxation Technique[J].Metallography,1976,9(3):233-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700