柔直换流阀用压接式IGBT器件物理场建模及内部压强分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physical field modeling and internal pressure analysis of press-pack IGBT device based VSC-HVDC converter
  • 作者:潘艳 ; 李金元 ; 李尧圣 ; 王鹏 ; 李辉 ; 姚然 ; 邓吉利 ; 龙海洋 ; 赖伟
  • 英文作者:PAN Yan;LI Jinyuan;LI Yaosheng;WANG Peng;LI Hui;YAO Ran;DENG Jili;LONG Haiyang;LAI Wei;State Key Laboratory of Advanced Transmission Technology,Global Energy Interconnection Research Institute Co.,Ltd.;State Key Laboratory of Power Transmission Equipment & System Security and New Technology,Chongqing University;
  • 关键词:柔性直流换流阀 ; 压接式IGBT器件 ; 物理场建模 ; 内部压强 ; 薄弱环节
  • 英文关键词:VSC-HVDC converter;;press-pack IGBT device;;physical field modeling;;internal pressure;;weak layer
  • 中文刊名:DLZS
  • 英文刊名:Electric Power Automation Equipment
  • 机构:全球能源互联网研究院有限公司先进输电技术国家重点实验室;重庆大学输配电装备及系统安全与新技术国家重点实验室;
  • 出版日期:2019-01-04 16:22
  • 出版单位:电力自动化设备
  • 年:2019
  • 期:v.39;No.297
  • 基金:国家重点研发计划项目(2016YFB0901800)~~
  • 语种:中文;
  • 页:DLZS201901006
  • 页数:6
  • CN:01
  • ISSN:32-1318/TM
  • 分类号:46-51
摘要
压接式IGBT器件是柔性直流换流阀的核心,器件内部压强分布直接影响器件及系统可靠性,而内部压强又受各种材料及复合应力相互耦合作用,针对不同应力耦合效果及其对内部压强的影响,进行压接式IGBT器件物理场模型仿真以及器件内部最大压强分布趋势的研究。首先,基于3.3 kV/50 A压接式IGBT器件实际结构,建立了多物理场模型,分析了机械、机-热和机-热-电不同耦合模型下器件内部压强分布的差异,并获取了器件承受内部最大压强的薄弱环节及各种内部应力作用的耦合效果。然后,基于机-热-电耦合模型,分析了不同环境温度、外部压力、导通电流对压接式IGBT器件内部薄弱层最大压强及性能的影响。最后,建立了压接式IGBT器件功率循环平台,通过恒导通工况和功率循环实验验证了机-热-电耦合模型的有效性和薄弱层分析的合理性。研究结果表明,机-热-电耦合模型能更好地表征压接式IGBT器件多应力耦合作用效果,内部最大压强的薄弱环节为IGBT芯片与发射极钼层间,且内部最大压强随环境温度、外加压力和导通电流的增加而增加。
        Press-pack IGBT device is the core of the VSC-HVDC converter,the pressure distribution inside the device directly influences the reliability of the device and the converter system,and the internal pressure is coupled by various materials and composite stresses in IGBT devices. According to different stress coupling effects and their influences on internal pressure,the physical field model simulation of press-pack IGBT device is carried out and the trend of maximum internal pressure distribution in the device are studied. Firstly,based on the actual structure of 3.3kV/50 A press-pack IGBT device,a multi-physical field model is established,and the difference of pressure distribution in the device under different coupling models of mechanical,mechanical-thermal and mechanical-thermal-electrical types is analyzed,and the weak layers of the device withstanding the maximum internal pressure and the coupling effects of various internal stresses are obtained. Secondly,based on the mechanical-thermal-electrical coupling mo-del,the influence of different ambient temperatures,external pressure and current values on the maximum pressure and performance of the internal weak layer of press-pack IGBT devices are analyzed. Finally,a power cycle platform of the press-pack IGBT device is established,and the validity of the mechanical-electrical-thermal coupling model and the rationality of weak layer analysis are testified by the power cycle experiments. The results show that the mechanical-thermal-electrical coupling model can be better used to present the performance of the press-pack IGBT device with the multi-stress mutual coupling effect. The internal maximum pressure weak layer is between IGBT chip and emitter molybdenum layer,and the internal maximum pressure is increased along with the increase of ambient temperature,external pressure and conduction current.
引文
[1]汤广福,贺之渊,庞辉.柔性直流输电工程技术研究、应用及发展[J].电力系统自动化,2013,37(15):3-14.TANG Guangfu,HE Zhiyuan,PANG Hui. Research,application and development of VSC-HVDC engineering technology[J]. Automation of Electric Power Systems,2013,37(15):3-14.
    [2]胡文旺,唐志军,林国栋,等.柔性直流输电工程系统调试技术应用、分析与改进[J].电力自动化设备,2017,37(10):197-209.HU Wenwang,TANG Zhijun,LIN Guodong,et al. Application,analysis and improvement of system commissioning technology for flexible DC transmission project[J]. Electric Power Automation Equipment,2017,37(10):197-209.
    [3]赵东元,刘江.压接式IGBT在电力系统应用特性分析[J].电力电子技术,2015,49(12):46-48.ZHAO Dongyuan,LIU Jiang. Application analysis of the press-pack IGBT in the power electronic field[J]. Power Electronics,2015,49(12):46-48.
    [4]李辉,白鹏飞,李洋,等.抑制IGBT器件结温的双馈风电变流器分段DSVPWM策略[J].电力自动化设备,2017,37(2):37-43.LI Hui,BAI Pengfei,LI Yang,et al. Segmented DSVPWM strategy to depress IGBT junction temperature of wind-power converter[J].Electric Power Automation Equipment,2017,37(2):37-43.
    [5]DENG Erping,ZHAO Zhibin,XIN Qingming,et al. Analysis on the difference of the characteristic between high power IGBT modules and press pack IGBTs[J]. Microelectronics Reliability,2017,78:25-37.
    [6] TINSCHERT L,ARDAL A R,POLLER T,et al. Possible failure modes in press-pack IGBTs[J]. Microelectronics Reliability,2015,55(6):903-911.
    [7] FRANKB. Power cycle testing of press-pack IGBT chips[D].Trondheim,Norway:Norwegian University of Science and Technology,2014.
    [8]DENG Erping,ZHAO Zhibin,XIN Qingming,et al. Analysis on the difference of the characteristic between high power IGBT modules and press pack IGBTs[J]. Microelectronics Reliability,2017,78:25-37.
    [9]POLLER T,D'ARCO S,HERNES M,et al. Influence of the clamping pressure on the electrical,thermal and mechanical behaviour of press-pack IGBTs[J]. Microelectronics Reliability,2013,53(9-11):1755-1759.
    [10]邓二平,赵志斌,张朋,等.压接型IGBT器件内部压力分布[J].电工技术学报,2017,32(6):201-208.DENG Erping,ZHAO Zhibin,ZHANG Peng,et al. Clamping force distribution within press pack IGBTs[J]. Transactions of China Electrotechnical Society,2017,32(6):201-208.
    [11]POLLER T,BASLER T,HERNES M,et al. Mechanical analysis of press-pack IGBTs[J]. Microelectronics Reliability,2012,52(9-10):2397-2402.
    [12]窦泽春,刘国友,陈俊,等.大功率压接式IGBT器件设计与关键技术[J].大功率变流技术,2016(2):21-25.DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and key technologies of high-power press-pack IGBT device[J]. High Power Converter Technology,2016(2):21-25.
    [13] DENG Erping,ZHAO Zhibin,ZHANG Peng,et al. Study on the methods to measure the junction-to-case thermal resistance of IGBT modules and press pack IGBTs[J]. Microelectronics Reliability,2017,79:248-256.
    [14]陈卫东,陈浩,于艳春.有限体积法的弹性结构动力学随机分析[J].哈尔滨工程大学学报,2011,32(11):1447-1451.CHEN Weidong,CHEN Hao,YU Yanchun. Dynamic stochastic analysis of an elastic structure based on the finite volume method[J]. Journal of Harbin Engineering University,2011,32(11):1447-1451.
    [15]米林,杨德兴,姜亚军,等.基于焦耳热的光纤布喇格光栅电压传感器研究[J].光子学报,2014,43(9):906005-1-5.MI Lin,YANG Dexing,JIANG Yajun,et al. Investigation of FBG voltage sensor based on joule heat[J]. Acta Photonica Sinica,2014,43(9):906005-1-5.
    [16]BUSCA C,TEODORESCU R,BLAABJERG F,et al. Dynamic thermal modelling and analysis of press-pack IGBTs both at componentlevel and chip-level[C]∥IECON 2013,39th Annual Conference of the IEEE Industrial Electronics Society. Vienna,Austria:IEEE,2013:677-682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700