微量Ca对准东煤基多孔碳孔隙结构调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adjusting Porosity of Zhundong Coal-based Activated Carbons Based on Catalytically Physical Activation Process With Trace Calcium Source
  • 作者:王丽杰 ; 孙飞 ; 皮信信 ; 李隆昕 ; 李思佳 ; 高继慧
  • 英文作者:WANG Li-Jie;SUN Fei;PI Xin-Xin;LI Long-Xin;LI Si-Jia;GAO Ji-Hui;School of Energy Science and Engineering, Harbin Institute of Technology;
  • 关键词:微量Ca ; 煤基多孔碳 ; 催化物理活化 ; 孔隙结构 ; 液相吸附
  • 英文关键词:trace calcium source;;coal-based activated carbons;;catalytically physical activation;;liquid adsorption
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:哈尔滨工业大学能源科学与工程学院;
  • 出版日期:2018-11-15
  • 出版单位:工程热物理学报
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金资助项目(No.51376054)
  • 语种:中文;
  • 页:GCRB201811033
  • 页数:9
  • CN:11
  • ISSN:11-2091/O4
  • 分类号:215-223
摘要
目前,原料成本高、制备工艺复杂仍是限制高性能多孔碳大规模应用的主要原因。以煤及其衍生物或生物质为原料,采用物理活化法能大大降低制备成本。为提高煤基多孔碳的孔隙结构,本文选用储量大、灰分含量较少的准东煤为原料,利用煤自身及外加矿物质的催化气化作用,研究多孔碳孔隙结构变化规律。研究表明:去灰煤经活化得到典型微孔碳;当煤中含有自身或外加的含Ca组分,经CO_2活化形成分级孔碳,且煤焦结构有序性降低。通过对煤活化前后物相分析及活化反应过程分析,煤自身或外加Ca源的催化气化作用有利于中大孔的形成。同时,球磨辅助处理对孔隙发展有协同促进作用。对制备的多孔碳进行液相污染物脱除实验,发现具有分级孔结构、孔隙发达的多孔碳脱除效率高,球磨后的准东原煤制备的多孔碳在1 min内就达到了400 mg·g~(-1)的吸附量。本研究表明在物理活化制焦过程,通过去除或添加微量的Ca源,就能对孔隙结构起到显著的调节作用。该方法操作简单、无污染,成本低,具有实际工程应用意义。
        At present, high raw material cost and complex preparation process are the main keys to limit the large-scale application of high performance porous carbon. Physical activation method has been well commercialized due to low production cost, which is regarded as the simplest and most economical craft. In this work, we select the recently discovered Zhundong coal, a typical low-rank coal as feedstocks and use the catalytic gasification of intrinsic or adding minerals, to study the changing regularity of pore structure for coal-based activated carbons. As a result, the typical microporous carbon was obtained by mineral-free coal sample, while hierarchically porous carbon could be obtained by raw coal samples or Ca-loaded coal samples. The catalytic gasification of the intrinsic or external Ca source was beneficial to the formation of the mesoporous pore through the analysis of the phase before and after the coal activation and the TGA of activation reaction process. At the same time, ball mill assisted processing has synergistic effect on pore development.To verify the application potentials of resulting activated carbons with various pore structure,Rhodamine B(RhB) removal tests were conducted. As-obtained hierarchically porous carbons are applicative for RhB removal. Hierarchically porous ZD(B)-AC has the best performance for RhB adsorption with capacity up to 400 mg·g~(-1) after 1 min. This work not only offers a new route for adjusting the porosity of activated carbons during physical activation process, but also provides a simple and scalable method for preparing coal-based activated carbons for rapidly liquid adsorption application.
引文
[1]Jiang D E, Cooper V R, Dai S, et al. Porous Graphene as the Ultimate Membrane for Gas Separation[J]. Nano Letters, 2009, 9(12):4019-4024
    [2]Xiao Youchang, Chng Meilin, Chung Taishung, et al.Asymmetric Structure and Enhanced Gas Separation Performance Induced by in Situ Growth of Silver Nanoparticles in Carbon Membranes[J]. Carbon, 2010, 48(2):408-416
    [3]Yamamoto T, Endo A, Ohmori T, et al. Porous Properties of Carbon Gel Microspheres as Adsorbents for Gas Separation[J]. Carbon, 2004, 42(8):1671-1676
    [4]Klymenko N A, Savchyna L A, Kozyatnyk I P. Estimation of Features of Activated Carbon Materials Used for Drinking Water Purification[J]. Polish Journal of Chemistry, 2008, 82(1):283-290
    [5]Li Yibing, Liu Shibin, Wang Xiuguang, et al. Activity Stability of Pt-Ru/C Doped with Eu for Methanol Electro-Catalytic Oxidation[J]. Rare Metal Materials&Engineering, 2011, 40(3):466-469
    [6]Zheng Zhoujun, Gao Qiuming. Hierarchical Porous Carbons Prepared by an Easy One-step Carbonization and Activation of Phenol-formaldehyde Resins with High Performance for Supercapacitors[J]. Journal of Power Sources, 2011, 196(3):1615-1619
    [7]Abdelkareem M A, Yoshitoshi T, Tsujiguchi T, et al.Vertical Operation of Passive Direct Methanol Fuel Cell Employing a Porous Carbon Plate[J]. Journal of Power Sources, 2010, 195(7):1821-1828
    [8]Jin K, Cunningham N. Development of Porous Carbon Foam Polymer Electrolyte Membrane Fuel Cell[J]. Journal of Power Sources, 2010, 195(8):2291-2300
    [9]Nakagawa N, Sekimoto K, Masdar M S, et al. Reaction Analysis of a Direct Methanol Fuel Cell Employing a Porous Carbon Plate Operated at High Methanol Concentrations[J]. Journal of Power Sources, 2009, 186(1):45-51
    [10]Kang K Y, Lee B I, Lee J S. Hydrogen Adsorption on Nitrogen-doped Carbon Xerogels[J]. Carbon, 2009, 47(4):1171-1180
    [11]And Y L, Yang R T. Hydrogen Storage on Platinum Nanoparticles Doped on Superactivated Carbon[J]. Journal of Physical Chemistry C, 2007, 111(29):11086-11094
    [12]Alonso A, Ruiz V, Blanco C, et al. Activated Carbon Produced from Sasol-Lurgi Gasifier Pitch and Its Application as Electrodes in Supercapacitors[J]. Carbon, 2006, 44(3):441-446
    [13]Li Xiao, Xing Wei, Zhuo Shuping, et al. Preparation of Capacitor's Electrode from Sunflower Seed Shell[J]. Bioresource Technology, 2011, 102(2):1118-23
    [14]Wang Liqun, Wang Jiuzhou, Jia Fan, et al. Nanoporous Carbon Synthesised with Coal Tar Pitch and Its Capacitivc Performance[J]. Journal of Materials Chemistry A,2013, 1(33):9498-9507
    [15]Stein A, Wang Z, Fierke M A. Functionalization of Porous Carbon Materials with Designed Pore Architecture[J].Advanced Materials, 2009, 21(3):265-293
    [16]Samarov A V, Barnakov C N, Kozlov A P, et al. Production of Highly Porous Carbon Sorbents for Methane Storage from Coal, Coke, and Individual Organic Compounds[J]. Coke and Chemistry, 2012, 55(9):353-357
    [17]Cong Hailin, Zhang Meirong, Chen Yanli, et al. Highly Selective CO_2, Capture by Nitrogen Enriched Porous Carbons[J]. Carbon, 2015, 92:297-304
    [18]Jalilov A S, Ruan G, Hwang C C, et al. Asphalt-derived High Surface Area Activated Porous Carbons for Carbon Dioxide Capture[J]. Acs Applied Materials&Interfaces,2015, 7(2):1376-1382
    [19]Wang Rutao, Wang Peiyu, Yan Xinbin, et al. Promising Porous Carbon Derived from Celtuce Leaves with Outstanding Supercapacitance and CO_2 Capture Performance[J]. Acs Applied Materials&Interfaces, 2012,4(11):5800-5806
    [20]Xu Guiyin, Han Jinpeng, Bing Ding, et al. Biomassderived Porous Carbon Materials with Sulfur and Nitrogen Dual-doping for Energy Storage[J]. Green Chemistry,2015, 17(3):1668-1674
    [21]Hou Jianhua, Cao Chuanbao, Ma Xilan, et al. From Rice Bran to High Energy Density Supercapacitors:a NewRoute to Control Porous Structure of 3D Carbon[J]. Sci Rep, 2014, 4:7260-7265
    [22]Zhao Yufeng, Ran Wei, He Jing, et al. Oxygen Rich Hierarchical Porous Carbon Derived from Artemia Cyst Shells with Superior Electrochemical Performance[J]. Acs Applied Materials&Interfaces, 2015, 7(2):1132-1139
    [23]Su Xiaohui, Jin Hui, Guo Liejin,et al. Experimental Study on Zhundong Coal Gasification in Supercritical Water with a Quartz Reactor:Reaction Kinetics and Pathway[J]. International Journal of Hydrogen Energy, 2015,40(24):7424-7432
    [24]Lahaye J, Ehrburger P. Fundamental Issues in Control of Carbon Gasification Reactivity[M]. Kluwer Academic Publishers, 1991
    [25]Martyniuk H, Wi?ckowska J. Adsorbents and Catalysts from Brown Coal for Flue Gas Desulfurization[J]. Fuel,1995, 74(11):1716-1718
    [26]Coetzee S, Neomagus H W J P, Bunt J R, et al. Improved Reactivity of Large Coal Particles by K2CO3, Addition during Steam Gasification[J]. Fuel Processing Technology, 2013, 114(3):75-80
    [27]Ohtsuka Y, Asami K. Highly Active Catalysts from Inexpensive Raw Materials for Coal Gasification[J]. Catalysis Today, 1997, 39(1-2):111-125
    [28]Quyn D M, Wu H, Bhattacharya S P, et al. Volatilisation and Catalytic Effects of Alkali and Alkaline Earth Metallic Species during the Pyrolysis and Gasification of victorian Brown Coal. Part II. Effects of Chemical form and Valence[J]. Fuel, 2002, 81(2):151-158
    [29]Leboda R, Skubiszewskazieba J, Grzegorczyk W. Effect of Calcium Catalyst Loading Procedure on the Porous Struc-ture of Active Carbon from Plum Stones Modified in the Steam Gasification Process[J]. Carbon, 1998, 36(4):417-425
    [30]Kopsel R, Zabawski H. Catalytic Effects of Ash Components in Low Rank Coal Gasification:1. Gasification with Carbon Dioxide[J]. Fuel, 1990, 69(3):275-281
    [31]张香兰,陈清如,徐德平,等.炭材料孔结构及负载催化剂对其脱硫性能影响.(I)钙元素的催化造中孔能力研究[J].煤炭转化,2004, 27(4):87-90Zhang Xianglan, Chen Qinru, Xu Deping, et al. Effect of Structure and Loaded Meal Catalyst on SO_2 Removal Property of Porous Carbon. Part(I)Influence of Ca Catalyst on Meso-pore Formation of Activated Carbon[J].Coal Conversion, 2004, 27(4):87-90
    [32]李阳,刘洋,冯伟,等.氧化钙对胜利褐煤焦水蒸气气化反应性能及微结构的影响[J].燃料化学学报,2015, 43(9):1038-1043Li Yang, Liu Yang, Feng Wei, et al. Influence of Calcium Oxide on Shengli Lignite Char Microstructure and Steam Gasification Performance[J]. Journal of Fuel Chemistry and Technology, 2015, 43(9):1038-1043
    [33]林明,范以宁,刘浏,等.高能机械球磨法制备V205-TiO_2超细微粒催化剂[J].催化学报,2001,22(6):585-588Lin Ming, Fan Yining, Liu Liu, et al. Preparation of Ultraf ine V_2O_5-TiO_2 Composite Oxide Catalyst by HighEnergy Ball Mil ling Method[J]. Chinese Journal of Catalysis, 2001, 22(6):585-588
    [34]Lu Feifei, Huang Ci, You Lijun, et al. Magnetic Hollow Carbon Microspheres as a Reusable Adsorbent for Rhodamine B Removal[J]. Rsc Advances, 2017, 7:23255-23264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700