基于SOF-FTIR的机场VOCs污染排放监测分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Monitoring and analyzing VOCs pollution emissions in airport with SOF-FTIR
  • 作者:韩昕 ; 李相贤 ; 高闽光 ; 魏秀丽 ; 童晶晶 ; 李胜 ; 叶树彬 ; 李妍
  • 英文作者:HAN Xin;LI Xiangxian;GAO Minguang;TONG Jingjing;WEI Xiuli;LI Sheng;YE Shubin;LI Yan;Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences;China University of Science and Technology;
  • 关键词:光谱学 ; SOF-FTIR ; 飞机尾气 ; 特征浓度 ; 挥发性有机物
  • 英文关键词:spectroscopy;;SOF-FTIR;;aircraft exhaust;;characteristic concentration;;VOCs
  • 中文刊名:LDXU
  • 英文刊名:Chinese Journal of Quantum Electronics
  • 机构:中国科学院安徽光学精密机械研究所;中国科学技术大学;
  • 出版日期:2019-01-15
  • 出版单位:量子电子学报
  • 年:2019
  • 期:v.36;No.186
  • 基金:国家重点研发计划项目,2017YFC0209902;; 国家自然科学基金青年科学基金,41605015;; 安徽光学精密机械研究所所长基金,AGHH201502;; 安徽省自然科学基金,1708085MD94~~
  • 语种:中文;
  • 页:LDXU201901016
  • 页数:7
  • CN:01
  • ISSN:34-1163/TN
  • 分类号:103-109
摘要
为了研究机场排放对环境大气的影响,在2014年12月10日到16日,采用掩日通量遥测傅里叶红外技术(SOF-FTIR)对北京首都国际机场的乙烯(C_2H_4)、己烷(C_6H_(14))和一氧化碳(CO)排放进行了研究.分析了三种组份的特征浓度值及其变化趋势,结果表明三者的特征浓度值变化趋势上具有高度相关性;机场乙烯的平均柱浓度为13.18 ppm,己烷的平均柱浓度为97.82 ppm,一氧化碳的平均柱浓度为3065.56 ppm.通过结合国际民航组织发布的测量数据,得到该机场乙烯和己烷的排放量分别达到碳氢化合物排放总量的3.32%和66.96%.文章结果表明,掩日通量遥测FTIR技术与ICAO的数据具有较好的一致性,为评估飞机排放提供数据支撑.
        To study the impact of emissions at an airport on local air quality, a measurement campaign at the Beijing Capital International Airport was performed from 10 to 16 December 2014. Measurements of CO, ethene(C_2 H_4) and hexane(C_6 H_(14)) were conducted with solar occulation flux-Fourier transform infrared spectrometer(SOF-FTIR) system to determine real in-use emission indices of aircraft.The characteristic concentration values of three target gas were analyzed. The results shows that there was a high correlation between them and the average column concentration of ethylene, hexane and Carbon monoxide in the airport are 13.18, 97.82, 3065.56 ppm, separately. By combining the measurement data released by International Civil Aviation Organization(ICAO), it can be concluded that the emissions of ethylene and hexane at the international airport have reached the levels of total hydrocarbon emissions3.32% and 66.96%, respectively. The results show that the SOF-FTIR technology has good consistency with ICAO data and provides technical support for the assessment of aircraft emissions.
引文
[1] Zhang Y H, Shao K H, Tang X Y, et al. The study of urban photochemical smog pollution in China[J]. Journal of Peking Uniersity(Natural Science)北京大学学报(自然科学版),1998, 34(2-3):260-268(in Chinese).
    [2] Chameides W, Walker G. A photochemical theory of tropospheric ozone[J]. Journal of Geophysical Research,1973, 36:87518760.
    [3] Wu R R, Bo Y, Li J, et al. Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008-2012[J]. Atmospheric Environment, 2016, 127:244254.
    [4] Xu J, Ding G A, Yan P, et al. Componential characteristics and sources identification of PM2.5 in Beijing[J].Journal of Applied Meteorological Science(应用气象学报),2006,(18):645-652(in Chinese).
    [5] Cheng C Y, Yin X B. Source, composition, formation and hazard of PM2.5 in haze[J]. Journal of University(大学学报),2014, 29(5):1-6(in Chinese).
    [6]Statistical Bulletin on Civil Aviation Development in 2013.(2013年民航行业发展统计公报)[EB/OL]. http://www.caac.gov.cn/.
    [7] Airbus GMF Booklet 2014-203[EB/OL]. http://www.airbus.com/company/market/forecast/.
    [8] Federal Aviation Administration Office of Environment and Energy. Aviation&Emissions:A Primer[R]. Washington:FAA, 2010.
    [9] Herndon C, Rogers T, Dunlea E, et al. Hydrocarbon emissions from in-use commercial aircraft during airport operations[J]. Environmental Science&Technology, 2006, 40(14):4406-13.
    [10] Mazaheri M, Johnson R, Morawska L. An inventory of particle and gaseous emissions from large aircraft thrust engine operations at an airport[J]. Atmospheric Environment, 2011, 45(20):3500-3507.
    [11] David L, David W, Piers M. Aviation and global climate change in the 21st century[J]. Atmospheric Environment,2009, 43(22):3520-3537.
    [12] Nicole Pauly Hyslop. Impaired visibility:the air pollution people see[J]. Atmospheric Environment, 2009, 43(1):182-195.
    [13] Augusto S, Alessandra M. Corrosion on cultural heritage buildings in Italy:a role for ozone?[J]. Environmental Pollution, 2009, 157(5):1513-1520.
    [14] Sovde A,Gauss M, Isaksen I. Aircraft pollution-a futuristic view[J]. Atmospheric Chemistry and Physics, 2003,37:3621-3632.
    [15] Intergovernmental Panel on Climate Change. Aircraft emissions[R]. IPCC, 2008.
    [16] Kurniawan J, Khardi S. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports[J]. Environmental Impact Assessment Review, 2011, 31(3):240-252.
    [17] Bruce E, Gao C, Donald R. Hydrocarbon emission from a modern commercial airliner[J]. Atmospheric Environment, 2006, 40(19):3601-3612.
    [18] Enis T, Usanmaz O, Rosen A. Empirical model assessment of commercial aircraft emissions according to flight phases[J]. International Journal of Energy&Environmental Engineering, 2013, 4(1):1-12.
    [19] Heland J, Sch(a|¨)fer K. Determination of major combustion products in aircraft exhausts by FTIR emission spectroscopy[J]. Atmospheric Environment, 1998, 32(97):30673072.
    [20] Klaus S, Carsten J, Peter S. Aircraft emission measurements by remote sensing methodologies at airports[J].Atmospheric Environment, 2003, 37(37):5261-5271.
    [21] International Civil Aviation Organization. International Standards and Recommended Practices, Environmental Protection Annex 16, Volume II Aircraft Engine Emissions, 2nd Edition[R]. Montreal:ICAO, 2008.
    [22] Liu Z M, Liu W Q, Gao M G, et al. Study of the retrieval algorithm of emission gas spatio-temporal distribution of pollution source using the infrared solar occultation flux(SOF)method[J].Acta Physica Sinica(物理学报),2008, 59(8):5397-5405(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700