换热管道污垢检测回波频率优选数值模拟与实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:SIMULATION AND EXPERIMENTS ON SELECTING THE ECHO FREQUENCY IN DETECTING THE HEAT EXCHANGE TUBE FOULING
  • 作者:孙灵芳 ; 王彤彤 ; 李霞 ; 朴亨
  • 英文作者:SUN LingFang;WANG TongTong;LI Xia;PIAO Heng;School of Automation Engineering,Northeast Electric Power University;Energy Conservation & Measure-Control Center;
  • 关键词:换热管污垢 ; 超声回波 ; 特征频率 ; 数值模拟 ; 实验检测
  • 英文关键词:Heat exchange tube fouling;;Ultrasonic echo;;Characteristic frequency;;Numerical simulation;;Detection
  • 中文刊名:JXQD
  • 英文刊名:Journal of Mechanical Strength
  • 机构:东北电力大学自动化工程学院;吉林省节能与测控技术工程实验室;
  • 出版日期:2019-01-24
  • 出版单位:机械强度
  • 年:2019
  • 期:v.41;No.201
  • 基金:国家自然科学基金项目(51176028)资助~~
  • 语种:中文;
  • 页:JXQD201901013
  • 页数:8
  • CN:01
  • ISSN:41-1134/TH
  • 分类号:75-82
摘要
在换热管污垢检测中,多物理场耦合作用下的实验还不具备开展条件,因此,建立准确的超声波传播模型,进行回波频率优选数值模拟具有重要意义。以有限元为基础,基于COMSOL Multiphysics建立了不同换热管特征下3D有限元模型,讨论了其传播特性与换热管特征和回波激励之间变化关系,求解出多层管道特征频率与回波振型。结果表明:不同换热管特征(管材和壁厚)与压力载荷之间具有相似交互关系,采用超声时域反射法检测管道污垢厚度,至少选取5 MHz回波激励,才可抑制伪吉布斯带来的振荡问题,最优检测频率为10 MHz,且壁厚在3 mm~5 mm时,检测效果达到最佳。数值模拟与实验结果一致,对管道沉积污垢的检测误差能控制在±5%以内,为不同管材特征频率选择提供了定量检测依据。
        The experiments under the coupling of the multi-physics field don't have the conditions to be carried out in the heat exchange tubes fouling test. And it's very important to establish the accurate ultrasonic propagation model for achieving the numerical simulation of selecting the detection frequency. Based on the finite element method,the three-dimension model with different heat exchange tubes had been established under the COMSOL Multiphysics condition. The varied relationship of the ultrasonic wave propagation,the different heat exchange tubes and echo exciting frequency were discussed respectively. The characteristic frequency and echo vibration mode of multi-layer tubes were found. The results show that the relationship between different characteristics of the heat exchange tubes( material and wall thickness) and pressure load is similar. The ultrasonic time-domain reflectometry technology to detect the thickness of the tube fouling needs to select 5 MHz echo exciting frequency at least for inhibiting the pseudo-Gibbs oscillation. The optimal detection frequency is 10 MHz,and the detection effect is the best when the thickness at 3 mm ~ 5 mm. The numerical simulation agrees with the test results,and ultrasonic detection produces an error around ±5% in examining tube fouling deposit. These results provide a basis for quantitative detecting basis to select the characteristic frequency under the different tubes.
引文
[1]杨善让,徐志明,孙灵芳.换热设备污垢与对策[M].2版.北京:科学出版社,2004:22-58.YANG ShanRang,XU Zhi Ming,SUN LingFang.Fouling and countermeasures of heat transfer equipment[M].Second Edition,Beijing:Science Press,2004:22-58(In Chinese).
    [2]Haticeozlem O,Virendram P.Computational analysis of fouling by low energy surfaces[J].Journal of Food Engineering,2010,99(3):250-256.
    [3]张莹,王耀南.基于局部加权偏最小二乘法的冷凝器污垢预测[J].仪器仪表学报,2010,31(2):299-304.ZHANG Ying,WANG Yao Nan.Prediction of condenser fouling based on locally weighted partial least squares regression algorithm[J].Chinese Journal of Scientific Instrument,2010,31(2):299-304(In Chinese).
    [4]李玉浩,曹学文,王文光,等.基于超声回波的管道沉积硫检测技术数值模拟[J].油气储运,2014,33(12):1331-1334.LI YuHao,CAO XueWen,WANG WenGuang,et al.Numerical simulation of inspection of sulfur deposition in pipeline based on ultrasonic echo[J].Oil&Gas Storage and Transportation,2014,33(12):1331-1334(In Chinese).
    [5]倪广健,林杰威.基于波有限元法的流固耦合结构波传导问题[J].振动与冲击,2016,35(4):204-209.NI GuangJian,LIN Jie Wei.Wave propagation in a fluid-structural coupled system based on wave finite element method[J].Journal of Vibration and Shock,2016,35(4):204-209(In Chinese).
    [6]Ni G,Elliott S J.Wave interpretation of numerical results for the vibration in thin conical shells[J].Journal of Sound&Vibration,2014,333(10):2750-2758.
    [7]谭冰芯,戴波.管道腐蚀缺陷超声导波检测数值模拟[J].控制工程,2015,22(2):334-341.TAN BingXin,DAI Bo.Numerical simulation of corrosion inspection in pipeline using ultrasonic guided waves[J].Control Engineering of China,2015,22(2):334-341(In Chinese).
    [8]Sim S T V,Chong T H,Krantz W B,et al.Monitoring of colloidal fouling and its associated metastability using Ultrasonic Time Domain Reflectometry[J].Journal of Membrane Science,2012,s401-402(9):241-253.
    [9]Masserey B,Raemy C,Fromme P.High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures[J].Ultrasonics,2014,54(7):1720-1728.
    [10]徐涛龙,姚安林,曾祥国,等.埋地钢质输气管道动态挖掘响应的试验研究及模拟分析[J].振动与冲击,2017,36(1):231-239.XU Tao Long,YAO An Lin,ZENG XiangGuo,et al.Tests and simulation for dynamic digging response of buried steel gas pipelines under excavator loading[J].Journal of Vibration and Shock,2017,36(1):231-239(In Chinese).
    [11]谭博欢,舒宝,李冬,等.流体引起的空调管路振动分析与实验研究[J].振动与冲击,2017,36(1):261-267.TAN BoHuan,SHU Bao,LI Dong.Analysis and test for fluid flow induced vibration of air conditioner pipes[J].Journal of Vibration and Shock,2017,36(1):261-267(In Chinese).
    [12]彭细荣,隋允康.应力约束拓扑优化的内力一阶近似方法[J].机械强度,2016,38(5):990-995.PENG XiRong,SUI YunKang.Method of first-order approximations of inter force for structural topology optimization with stress constraints[J].Journal of Mechanical Strength,2016,38(5):990-995(In Chinese).
    [13]杨超,范士娟.输液管道流固耦合振动的数值分析[J].振动与冲击,2009,28(6):57-59.YANG Chao,FAN ShiJuan.Simulation of fluctuating wind speed time series applied on overpass bridges with resorting to ARMAmodel[J].Journal of Vibration and Shock,2009,28(6):57-59(In Chinese).
    [14]Jennifer A,Michaels,Sang Jun Lee,et al.Chirp excitation of ultrasonic guided waves[J].Ultrasonic,2013,53(1):265-270.
    [15]江小志,董金善,吕冬祥.基于ANSYS的挠性薄管板设计方法与结构尺寸研究[J].机械强度,2015,37(1):109-113.JIANG Xiao Zhi,DONG JinShan,LV DongXiang.Design method of flexible and thin tube sheet and research of structure size based on ansys[J].Journal of Mechanical Strength,2015,37(1):109-113(In Chinese).
    [16]窦益华,于凯强,杨向同,等.输流弯管流固耦合振动有限元分析[J].机械设计与制造工程,2017,46(2):18-21.DOU Yi Hua,YU Kai Qiang,YANG XiangTong,et al.Finite element analysis offluid-structure interaction vibration of curved pipe[J].Machine Design and Manufacturing Engineering,2017,46(2):18-21(In Chinese).
    [17]张明,王菲,杨强.基于三轴压缩试验的岩石统计损伤本构模型[J].岩土工程学报,2013,35(11):1965-1971.ZHANG Ming,WANG Fei,YANG Qiang.Statistical damage constitutive model for rocks based on triaxial compression tests[J].Chinese Journal of Geotechnical Engineering,2013,35(11):1965-1971(In Chinese).
    [18]李太宝.计算声学-声场的方程和计算[M].北京:科学出版社,2005,145.LI Tai Bao.Computation of acoustic-sound field equations and calculations[M].Beijing:Science Press,2005,8(In Chinese).
    [19]孙灵芳,徐曼菲,朴亨,等.基于流固耦合的换热管道污垢超声回波检测数值模拟与实验[J].中国机械工程,2017,28(3):341-347.SUN LingFang,XU Man Fei,PIAO Heng,et al.Numerical simulation and experiments of fluid-solid coupling-based ultrasonic echo detection of pipeline fouling[J].China Mechanical Engineering,2017,28(3):341-347(In Chinese).
    [20]李乐,苑修乐,杜广生,等.超声波流量计中反射装置的声-固耦合[J].仪器仪表学报,2015,36(9):1946-1951.LI Le,YUAN XiuLe,DU Guang Sheng,et al.Analysis of the reflection device in ultrasonic flowmeter based on acoustic-structure coupling method[J].Chinese Journal of Scientific Instrument,2015,36(9):1946-1951(In Chinese).
    [21]曾正明.机械工程材料手册[M].6版.北京:机械工业出版社,2007:589.ZENG ZhengMing.Handbook of mechanical engineering materials[M].Sixth Edition.Beijing:China Machine Press,2007:589(In Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700