单光子调制频谱用于量子点荧光寿命动力学的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on fluorescence lifetime dynamics of quantum dot by single photons modulation spectrum
  • 作者:张强强 ; 胡建勇 ; 景明勇 ; 李斌 ; 秦成兵 ; 李耀 ; 肖连团 ; 贾锁堂
  • 英文作者:Zhang Qiang-Qiang;Hu Jian-Yong;Jing Ming-Yong;Li Bin;Qin Cheng-Bing;Li Yao;Xiao Lian-Tuan;Jia Suo-Tang;Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University;Collaborative Innovation Center of Extreme Optics, Shanxi University;
  • 关键词:量子点 ; 荧光寿命 ; 单光子调制频谱 ; 误差
  • 英文关键词:quantum dot;;fluorescence lifetime;;single photons modulation spectrum;;errors
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:山西大学激光光谱研究所量子光学与光量子器件国家重点实验室;山西大学极端光学协同创新中心;
  • 出版日期:2018-12-13 13:47
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61527824,11434007,61875109);; 教育部长江学者和创新团队发展计划(批准号:IRT_17R70);; 山西省“1331工程”重点学科建设计划;; 高等学校学科创新引智计划(111计划)(批准号:D18001)资助的课题~~
  • 语种:中文;
  • 页:WLXB201901026
  • 页数:9
  • CN:01
  • ISSN:11-1958/O4
  • 分类号:284-292
摘要
本文开展了基于单光子调制频谱测量量子点荧光寿命动力学特性的研究.在脉冲激光激发下,对探测到的量子点单光子荧光信号进行频谱分析以获得荧光调制频谱,研究发现特征频谱信号幅值与荧光寿命之间存在确定的非线性对应关系.这种单光子调制频谱方法能有效消除背景噪声和单光子探测器暗计数的影响,用于分析量子点荧光寿命动力学特性时在准确度以及时间分辨率方面都较目前普遍采用的荧光衰减曲线寿命拟合方法呈现出明显优势:当涨落误差为5%时,寿命测量准确度提高了一个数量级;当涨落误差和偏离误差均为5%时,对动力学测量效率以及时间分辨率提高了四倍以上.因此单光子调制频谱可以作为获取量子点在短时间尺度内激发态动力学信息的一种有效技术手段.
        Fluorescence lifetime is an important characteristic parameter of quantum dot, which plays an important role in studying the optical properties of quantum dot. As a common method to obtain fluorescence lifetime, fluorescence decay curve fitting has been broadly accepted. The least squares fitting to the fluorescence decay curve is performed by using the exponential decay function to obtain fluorescence lifetime with taking the instrument response function into account.However, since the fluorescence decay curve inevitably involves noise photons such as dark counts and stray photons,there is a certain error in the fluorescence lifetime obtained by the method. In order to reduce the error and improve the accuracy of the results, enough photons are required. Nevertheless, too many photons will result in low efficiency of lifetime analysis and temporal resolution, and therefore this method can hardly extract dynamic information on a smaller temporal scale. In this paper, we propose a new method of obtaining the fluorescence lifetime of quantum dot,namely the single photons modulation spectrum. The basic idea is based on the relationship between the fluorescence lifetime and the signal amplitude of pulse repetition frequency in a single dynamic process. The experimental results show that the fluctuation errors and deviation errors of lifetime obtained by our method are significantly lower than those of the previous method when the same number of photons is used. Therefore, high-accuracy fluorescence lifetime can be obtained. When the fluctuation error is 5%, the accuracy is increased by more than one order of magnitude.And to obtain the fluorescence lifetime of the same error level, the number of photons required for our method is much smaller than that of the previous one, which indicates that our method can effectively suppress the disturbance of noise photons and enables the lifetime measurement with high efficiency and temporal resolution. When the fluctuation error and deviation error are both 5%, the efficiency and temporal resolution are increased by more than four times. Finally,real-time lifetime trajectory corresponding to the photoluminescence intensity time trajectory is obtained by our method,where rich dynamic information can be obtained on a sub-second temporal scale. The method of obtaining fluorescence lifetime with powerful anti-noise capability, high efficiency and temporal resolution proposed in this paper can play an important role in studying the fluorescence dynamics of single quantum systems.
引文
[1]Pietryga J M,Park Y S,Lim J,Fidler A F,Bae W K,Brovelli S,Kilmov V I 2016 Chem.Rev.116 10513
    [2]Semonin O E,Luther J M,Choi S,Chen H Y,Gao J,Nozik A J,Beard M C 2011 Science 334 1530
    [3]Kim M R,Ma D L 2015 J.Phys.Chem.Lett.6 85
    [4]Liu C J,Lu M,Su W A,Dong T Y,Shen W Z 2018Acta Phys.Sin.67 027302(in Chinese)[刘长菊,卢敏,苏未安,董太源,沈文忠2018物理学报67 027302]
    [5]Bae W K,Park Y S,Lim J,Lee D G,Padilha L A,McDaniel H,Robel I,Lee C H,Pietryga J M,Klimov V I2013 Nat.Commun.4 2661
    [6]Huang Q Q,Pan J Y,Zhang Y N,Chen J,Tao Z,He C,Zhou K F,Tu Y,Lei W 2016 Opt.Express 24 25955
    [7]Sukhovatkin V,Hinds S,Brzozowski L,Sargent E H 2009Science 324 1542
    [8]Fisher B,Caruge J M,Zehnder D,Bawendi M 2005Phys.Rev.Lett.94 087403
    [9]Klimov V I,Mikhailovsky A A,McBranch D W,Leatherdale C A,Bawendi M G 2000 Science 287 1011
    [10]Klimov V I,Mikhailovsky A A,Xu S,Malko A,Hollingsworth J A,Leatherdale C A,Eisler H J,Bawendi M G 2000 Science 290 314
    [11]Chen Q G,Zhou T Y,He C Y,Jiang Y Q,Chen X 2011Anal.Methods 3 1471
    [12]Fan Y Y,Liu H L,Han R C,Huang L,Shi H,Sha Y L,Jiang Y Q 2015 Sci.Rep.5 9908
    [13]Welsher K,Yang H 2014 Nat.Nanotechnol.9 198
    [14]Hu F R,Lv B H,Yin C Y,Zhang C F,Wang X Y,Lounis B,Xiao M 2016 Phys.Rev.Lett.116 106404
    [15]Yuan G C,Gómez D E,Kirkwood N,Boldt K,Mulvaney P 2018 ACS Nano 12 3397
    [16]Fisher B R,Eisler H J,Stott N E,Bawendi M G 2004J.Phys.Chem.B 108 143
    [17]Schlegel G,Bohnenberger J,Potapova I,Mews A 2002Phys.Rev.Lett.88 137401
    [18]Schmidt R,Krasselt C,Gohler C,von Borczyskowski C2014 ACS Nano 8 3506
    [19]Zhang K,Chang H Y,Fu A H,Alivisatos A P,Yang H2006 Nano Lett.6 843
    [20]Htoon H,Hollingsworth J A,Dickerson R,Klimov V I2003 Phys.Rev.Lett.91 227401
    [21]Rabouw F T,Vaxenburg R,Bakulin A A,van Dijk Moes R J A,Bakker H J,Rodina A,Lifshitz E,Efros A L,Koenderink A F,Vanmaekelbergh D 2015 ACS Nano 910366
    [22]Wang Z,Zhang G F,Li B,Chen R Y,Qin C B,Xiao LT,Jia S T 2015 Acta Phys.Sin.64 247803(in Chinese)[王早,张国峰,李斌,陈瑞云,秦成兵,肖连团,贾锁堂2015物理学报64 247803]
    [23]Li Z J,Zhang G F,Li B,Chen R Y,Qin C B,Gao Y,Xiao L T,Jia S T 2017 Appl.Phys.Lett.111 153106
    [24]Yang C G,Zhang G F,Feng L H,Li B,Li Z J,Chen RY,Qin C B,Gao Y,Xiao L T,Jia S T 2018 Opt.Express26 11889
    [25]Zang H D,Routh P K,Huang Y,Chen J S,Sutter E,Sutter P,Cotlet M 2016 ACS Nano 10 4790
    [26]Rusimova K R,Purkiss R M,Howes R,Lee F,Crampin S,Sloan P A 2018 Science 361 1012
    [27]Li B,Zhang G F,Yang C G,Li Z J,Chen R Y,Qin C B,Gao Y,Huang H,Xiao L T,Jia S T 2018 Opt.Express26 4674
    [28]Hu J Y,Yu B,Jing M Y,Xiao L T,Jia S T,Qin G Q,Long G L 2016 Light-Sci.Appl.5 e16144
    [29]Hu J Y,Liu Y,Liu L L,Yu B,Zhang G F,Xiao L T,Jia S T 2015 Photon.Res.3 24
    [30]Liu X B,Lin D Y,Wu Q Q,Yan W,Luo T,Yang Z G,Qu J L 2018 Acta Phys.Sin.67 178701(in Chinese)[刘雄波,林丹樱,吴茜茜,严伟,罗腾,杨志刚,屈军乐2018物理学报67 178701]
    [31]Mobli M,Hoch J C 2014 Prog.Nucl.Magn.Reson.Spectrosc.83 21
    [32]Qiao Z X,Qin C B,He W J,Gong Y N,Zhang X R,Zhang G F,Chen R Y,Gao Y,Xiao L T,Jia S T 2018Acta Phys.Sin.67 066802(in Chinese)[乔志星,秦成兵,贺文君,弓亚妮,张晓荣,张国峰,陈瑞云,高岩,肖连团,贾锁堂2018物理学报67 066802]
    [33]He W J,Qin C B,Qiao Z X,Zhang G F,Xiao L T,Jia S T 2016 Carbon 109 264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700