基于重叠网格的船模停船操纵CFD数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CFD numerical simulations of stopping maneuver of ship model using overset grid technology
  • 作者:孙晨光 ; 王建华 ; 万德成
  • 英文作者:Sun Chenguang;Wang Jianhua;Wan Decheng;School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University;State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration;
  • 关键词:停船操纵 ; naoe-FOAM-SJTU求解器 ; 重叠网格技术
  • 英文关键词:stopping maneuver;;naoe-FOAM-SJTU solver;;overset grid technology
  • 中文刊名:JCZG
  • 英文刊名:Chinese Journal of Ship Research
  • 机构:上海交通大学船舶海洋与建筑工程学院;上海交通大学海洋工程国家重点实验室;高新船舶与深海开发装备协同创新中心;
  • 出版日期:2019-03-21 13:54
  • 出版单位:中国舰船研究
  • 年:2019
  • 期:v.14;No.79
  • 基金:国家自然科学基金资助项目(51879159,51490675,11432009,51579145);; 长江学者奖励计划(T2014099);; 上海高校东方学者特聘教授岗位跟踪计划(2013022);; 上海市优秀学术带头人计划(17XD1402300);; 工信部数值水池创新专项VIV/VIM项目(2016-23/09)
  • 语种:中文;
  • 页:JCZG201902002
  • 页数:7
  • CN:02
  • ISSN:42-1755/TJ
  • 分类号:11-17
摘要
[目的]随着国际航运业的迅速发展,港口和航道变得日益拥堵,研究大型船舶的停船性能对于航行安全至关重要。[方法]使用基于开源CFD软件OpenFOAM自主开发的naoe-FOAM-SJTU求解器,以及船舶六自由度运动和带桨多级物体运动求解模块,采用重叠网格技术,对带桨KVLCC2船模进行紧急停船操纵数值模拟。首先,控制螺旋桨转速,使船模达到稳定自航状态;然后,在某时刻控制螺旋桨倒转,以达到紧急停船操纵的目的。通过对全粘性流场的整体求解,给出船模自航以及停船操纵过程中的运动状态和细致流场信息,分析倒车效应产生的原因,并将数值预报结果与相关试验数据进行对比验证。[结果]结果显示,数值预报结果与相关试验数据间误差在5%以内,证明采用naoe-FOAM-SJTU求解器对船舶倒车停船操纵问题进行数值预报是可靠的。[结论]所采用的方法可针对停船问题为船舶前期设计和操纵方式的选择提供参考。
        [Objectives]With the development of international shipping, ports and waterways are becoming increasingly crowded. Study on stopping ability of large ships is crucial to their voyage safety.[Methods]The naoe-FOAM-SJTU solver based on the CFD platform OpenFOAM and the ship 6-DOF motion and multi-level object with propeller motion solver module and the overset grid technology are used to numerically simulate the emergency stopping maneuver of KVLCC2 model with propeller. First,the rotation speed of propeller is controlled to achieve the steady self-propulsion state of the ship model;then the propeller is reversed at a moment speed to achieve the emergency stopping maneuver. By generally solving viscous flow field,the motion state and detailed flow field information of the ship model during self-propulsion and stopping maneuver are presented,the cause of reverse effect is analyzed,and the numerical prediction results are compared with the test data.[Results]The results indicate that the discrepancy between numerical prediction results and test data is within 5% and that it is possible to numerically predict the reverse and stopping maneuver problems by using the naoe-FOAM-SJTU solver.[Conclusions]The method adopted herein can provide reference for preliminary design and maneuver method of a ship in terms of ship stopping issues.
引文
[1]洪碧光.船舶操纵原理与技术[M].大连:大连海事大学出版社,2007.Hong B G.The principle and technology of ship maneuver[M].Dalian:Dalian Maritime University Press,2007(in Chinese).
    [2]古文贤.船舶的停船性能[J].世界海运,1995(3):42-44.Gu W X.Stopping ability of ship[J].World Shipping,1995(3):42-44(in Chinese).
    [3]邹早建.IMO船舶操纵性标准与操纵性预报研究[C]//全国海事技术研讨会论文集,2002:537-543.Zou Z J.IMO ship maneuverability standards and maneuverability prediction research[C]//Papers Collection of National Maritime Technology Seminar.[S.l]:[s.n],2002:537-543(in Chinese).
    [4]Kim H,Akimoto H,Isalam H.Estimation of the hydrodynamic derivatives by RANS simulation of planar motion mechanism test[J].Ocean Engineering,2015,108:129-139.
    [5]Chislett M S,Smitt L W.A brief description of the HYA large amplitude PMM system[J].Journal of Mechanical Engineering Science,1972,14(7):80-84.
    [6]刘正江.倒车停船性能实用预报的研究[J].大连海事大学学报,1987(3)57-66.Liu Z J.Study on the prediction of stopping ability using reversing propeller[J].Journal of Dalian Maritime University,1987(3):57-66(in Chinese).
    [7]赵月林,古文贤.浅水中倒车停船性能预报及停船方法探讨[J].大连海事大学学报,1991(4):354-360.Zhao Y L,Gu W X.Study of stopping ability prediction and stopping method in shallow water[J].Journal of Dalian Maritime University,1991(4):354-360(in Chinese).
    [8]闫伟.大型船舶在浅水域操纵性能的探讨[J].航海技术,2008(增刊2):4-6.Yan W.Discussion about manoeuvreability of big vessel in shallow water[J].Marine Technology,2008(Supp 2):4-6(in Chinese).
    [9]张玉喜,贲锋,李国帅.狭水道中航行船舶间距控制的研究[J].船海工程,2009,38(4):1-3.Zhang Y X,Ben F,Li G S.Research on ship space of navigating in narrow channels[J].Ship and Ocean Engineering,2009,38(4):1-3(in Chinese).
    [10]Fujii Y,Tanaka K.Traffic capacity[J].Journal of Navigation,1971,24(4):543-652.
    [11]张强,张显库.考虑螺旋桨倒车特性的船舶港内操纵数学模型及仿真应用[J].中国造船,2016,57(4):147-156.Zhang Q,Zhang X K.A ship maneuvering model and application in harbor considering reversing characteristics of propeller[J].Shipbuilding of China,2016,57(4):147-156(in Chinese).
    [12]Sakamoto N,Carrica P M,Stern F.URANS simulations of static and dynamic maneuvering for surface combatant:Part 2.Analysis and validation for local flow characteristics[J].Journal of Marine Science and Technology,2012,17(4):446-468.
    [13]Carrica P M.DES simulations of KVLCC1 in turn and zigzag maneuvers with moving propeller and rudder[C]//Proceedings of the SIMMAN 2008 Workshop on Verification and Validation of Ship Maneuvering Simulation Methods.Lyngby,Denmark:[s.n.],2008.
    [14]Mofidi A,Carrica P M.Simulations of zigzag maneuvers for a container ship with direct moving rudder and propeller[J].Computers&Fluids,2014,96:191-203.
    [15]Yoshimura Y.Mathematical model for the manoeuvring ship motion in shallow water[J].Journal of the Kansai Society of Naval Architects,1986,200:41-51.
    [16]Shen Z,Korpus R.Numerical simulations of ship self-propulsion and maneuvering using dynamic overset grids in OpenFOAM[C]//Proceedings of Tokyo2015 CFD Workshop.Tokyo,Japan,2015.
    [17]王建华,万德成.全附体ONRT船模在波浪中自航的数值模拟[J].应用数学和力学,2016,37(12):1345-1358.Wang J H,Wan D C.Investigations of self-propulsion in waves of fully appended ONR tumblehome model[J].Applied Mathematics and Mechanics,2016,27(12):1345-1358(in Chinese).
    [18]吴建威,尹崇宏,万德成.基于三种方法的螺旋桨敞水性能数值预报[J].水动力学研究与进展(A辑),2016,31(2):177-187.Wu J W,Yin C H,Wan D C.Numerical prediction of the propeller open-water performance based on three numerical methods[J].Chinese Journal of Hydrodynamics(Ser.A),2016,31(2):177-187(in Chinese).
    [19]尹崇宏,吴建威,万德成.基于IDDES方法的模型尺度和实尺度VLCC阻力预报与流场分析[J].水动力学研究与进展(A辑),2016,31(3):259-268.Yin C H,Wu J W,Wan D C.Model-and full-scale VLCC resistance prediction and flow field analysis based on IDDES method[J].Chinese Journal of Hydrodynamics(Ser.A),2016,31(3):259-268(in Chinese).
    [20]罗天,万德成.基于CFD的船舶横摇数值模拟与粘性效应分析[J].中国舰船研究,2017,12(2):1-11,48.Luo T,Wan D C.Numerical analysis of viscous effect on ship rolling motions based on CFD[J].Chinese Journal of Ship Research,2017,12(2):1-11,48(in Chinese).
    [21]Rusche H.Computational fluid dynamics of dispersed two-phase flows at high phase fractions[D].London:University of London,2003.
    [22]Cao H,Wan D C.Benchmark computations of wave run-up on single cylinder and four cylinders by naoe-FOAM-SJTU solver[J].Applied Ocean Research,2017,65:327-337.
    [23]Noack R W,Boger D A,Kunz R F,et al.Suggar++:an improved general overset gridassembly capability[C]//Proceedings of the 19th AIAA Computational Fluid Dynamics.San Antonio,TX:AIAA,2009:22-25.
    [24]Tsukada Y,Ueno M,Tanizawa K,et al.Development of an auxiliary thruster for free-running model ship tests[J].Journal of the Society of Naval Architects of Japan,2014,20:59-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700