三明治型多层膜楔形金属狭缝阵列的宽频透射
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Broadband optical transmission through sandwich-shaped multilayer tapered metallic slit arrays
  • 作者:祁云平 ; 张雪伟 ; 周培阳 ; 严春满 ; 王向贤
  • 英文作者:QI YunPing;ZHANG XueWei;ZHOU PeiYang;YAN ChunMan;WANG XiangXian;Engineering Research Center of Gansu Province for Intelligent Information Technology and Application,College of Physics and Electronic Engineering,Northwest Normal University;School of Science,Lanzhou University of Technology;
  • 关键词:宽频透射 ; 多层膜楔形金属狭缝 ; 表面等离极化激元 ; 有限元法
  • 英文关键词:broadband optical transmission;;multilayer tapered slit;;surface plasmon polaritons;;finite element method
  • 中文刊名:JGXK
  • 英文刊名:Scientia Sinica(Physica,Mechanica & Astronomica)
  • 机构:西北师范大学物理与电子工程学院甘肃省智能信息技术与应用工程研究中心;兰州理工大学理学院;
  • 出版日期:2018-06-28
  • 出版单位:中国科学:物理学 力学 天文学
  • 年:2018
  • 期:v.48
  • 基金:国家自然科学基金(编号:61367005,61741119);; 甘肃省自然科学基金(编号:17JR5RA078)资助
  • 语种:中文;
  • 页:JGXK201807007
  • 页数:8
  • CN:07
  • ISSN:11-5848/N
  • 分类号:99-106
摘要
基于非共振原理的异常光学透射(Extraordinary Optical Transmission,EOT)现象可以实现宽频带透射,对宽频带光子器件的设计具有重要意义.金属狭缝纳米结构由于结构简单、易于集成、耦合效率高,常在纳米结构器件中用于构建光源.但金属亚波长狭缝结构一直存在透射率低的问题.为实现金属狭缝的宽频带高透射率,本文设计了三明治型多层膜楔形金属狭缝阵列,并应用有限元方法研究了该结构的透射特性.结果表明:与单层膜楔形金属狭缝阵列相比,多层膜楔形金属狭缝阵列在透射光谱中可产生多个透射峰,并且在红外波段可实现增强透射和宽频带透射;由于楔形狭缝从入射口到出射口逐渐变细的结构特点,狭缝从入口到出口阻抗逐渐变化,在介质层内及狭缝出口可实现局域电场增强.此外,本文还研究了楔形狭缝入口宽度、介质层厚度、介质层位置、金属薄膜总厚度及狭缝周期等对多层膜楔形金属狭缝阵列透射特性的影响.研究结果将对设计具有宽频带透射的多层膜结构及在纳米光源设计、集成光路研究、光电子电路应用方面有一定的指导意义.
        The non-resonant extraordinary optical transmission(EOT) can achieve broadband transmission, which is significant for broadband light harvesting devices. A metallic single slit nanostructure or slit array structure, due to simple structure and easy-to integration, has been used to construct a light source in the nanostructures based on the surface plasmon polaritons(SPPs). To obtain broadband transmission, in this paper, we propose a sandwich-shaped multilayer tapered metallic slit arrays. The transmission properties of the multilayer tapered metallic slit arrays were investigated using the finite element method(FEM). Results show that, compared with monolayer tapered metallic slit arrays structure,multilayer tapered metallic slit arrays can achieve more transmission peaks in the spectra and leading to broadband transmission in the infrared; the tapered provides a gradual impedance variation from the entrance to the exit of the slits,the light is strongly localized and enhanced at the slit exits and the dielectric layer, in contrast with straight slits. In addition, the effects of the thickness of the dielectric layer, the position of dielectric layer, the period of the arrays and the width of the slit entrance on the transmission property were also studied. These results would be helpful for designing the broadband transmission properties of multilayer structures and may be applied value in the fields of nano-light source design, photonic integrated circuits and optoelectronic circuits and so on.
引文
1 Ebbesen T W,Lezec H J,Ghaemi H F,et al.Extraordinary optical transmission through sub-wavelength hole arrays.Nature,1998,86:1114
    2 Bethe H A.Theory of diffraction by small holes.Phys Rev,1944,66:163-182
    3 Barnes W L,Dereux A,Ebbesen T W.Surface plasmon subwavelength optics.Nature,2003,424:824-830
    4 Dahlin A,Z?ch M,Rindzevicius T,et al.Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events.J Am Chem Soc,2005,127:5043-5048
    5 Wijesinghe T M,Premaratne M,Agrawal G P.Low-loss dielectric-loaded graphene surface plasmon polariton waveguide based biochemical sensor.J Appl Phys,2015,117:213105
    6 Ren B,Liu G K,Lian X B,et al.Raman spectroscopy on transition metals.Anal Bioanal Chem,2007,388:29-45
    7 Sun C,Rong K,Wang Y,et al.Plasmonic ridge waveguides with deep-subwavelength outside-field confinements.Nanotechnology,2016,27:065501
    8 Li H,Nie J Y,Xu Y Z,et al.Converting surface plasmon polaritons to spatial arbitrary bending beams by using graded groove arrays(in Chinese).Acta Opt Sin,2016,36:1026020[李辉,聂俊英,徐永征,等.应用分级凹槽阵列转换表面等离极化激元为空间任意弯曲光束.光学学报,2016,36:1026020]
    9 Wang Y,Qin Y,Zhang Z.Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays.Plasmonics,2014,9:203-207
    10 Liu H,Lalanne P.Microscopic theory of the extraordinary optical transmission.China Basic Sci,2008,452:728
    11 Jitender,Kumar A.Effect of cross-sectional shape on the propagation characteristics of fundamental plasmon mode guided along Au and Ag nanowires.Opt Commun,2017,382:337-341
    12 Wan P,Yang C H.Properties of graphene TE mode surface plasmons and surface plasmon waveguides(in Chinese).Acta Opt Sin,2017,https://doi.org/10.3788/aos201737.1124002[万鹏,杨翠红.石墨烯TE模表面等离子体波和表面等离子体波导的特性.光学学报,2017,doi:10.3788/aos201737.1124002]
    13 Ruan Z,Qiu M.Enhanced transmission through periodic arrays of subwavelength holes:The role of localized waveguide resonances.Phys Rev Lett,2006,96:233901
    14 Degiron A,Ebbesen T W.The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures.J Opt A-Pure Appl Opt,2005,7:S90-S96
    15 Parsons J,Hendry E,Burrows C P,et al.Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays.Phys Rev B,2009,79:073412
    16 Liu G,Liu Z,Huang K,et al.Narrowband light total antireflection and absorption in metal film-array structures by plasmonic near-field coupling.Plasmonics,2014,9:17-25
    17 Fujiyoshi Y,Nemoto T,Kurata H.Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy.Ultramicroscopy,2017,175:116-120
    18 Anishur Rahman A T M,Majewski P,Vasilev K.Extraordinary optical transmission:Coupling of the Wood-Rayleigh anomaly and the FabryPerot resonance.Opt Lett,2012,37:1742
    19 Lin L,Roberts A.Light transmission through nanostructured metallic films:Coupling between surface waves and localized resonances.Opt Express,2011,19:2626
    20 Wang C,Gu J,Han J,et al.Role of mode coupling on transmission properties of subwavelength composite hole-patch structures.Appl Phys Lett,2010,96:251102
    21 Hou Y.Extremely high transmittance at visible wavelength induced by magnetic resonance.Plasmonics,2011,6:289-293
    22 Rui G,Zhan Q,Ming H.Nanoantenna-assisted extraordinary optical transmission under radial polarization illumination.Plasmonics,2011,6:521-525
    23 Subramania G,Foteinopoulou S,Brener I.Nonresonant broadband funneling of light via ultrasubwavelength channels.Phys Rev Lett,2011,107:163902
    24 Shen H,Maes B.Enhanced optical transmission through tapered metallic gratings.Appl Phys Lett,2012,100:241104
    25 AlùA,D’Aguanno G,Mattiucci N,et al.Plasmonic brewster angle:Broadband extraordinary transmission through optical gratings.Phys Rev Lett,2011,106:123902
    26 Qin Y,Cao W,Zhang Z Y.Enhanced optical transmission through metallic slits embedded with rectangular cavities(in Chinese).Acta Phys Sin,2013,12:127302[秦艳,曹威,张中月.内嵌矩形腔楔形金属狭缝的增强透射.物理学报,2013,12:127302]
    27 Zhang Q,Hu P,Liu C.Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic gold mushroom caps.Opt Commun,2015,335:231-236
    28 Pang S F,Zhang Z Y,Qu S X.Nonresonant enhanced optical transmission through the metallic circular nanohole arrays(in Chinese).Sci SinPhys Mech Astron,2014,44:142-149[庞绍芳,张中月,屈世显.金属圆孔阵列的非共振增强透射.中国科学:物理学力学天文学,2014,44:142-149]
    29 Ye Y H,Zhang J Y.Enhanced light transmission through cascaded metal films perforated with periodic hole arrays.Opt Lett,2005,30:1521-1523
    30 Hao F,Nordlander P,Sonnefraud Y,et al.Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities:Implications for nanoscale optical sensing.ACS Nano,2009,3:643-652
    31 Zhou Y,Zhao Y,Zou S.Different transmission enhancement mechanisms in a sandwiched nanofilm.Part Part Syst Charact,2017,34:1600327
    32 Nie J Y,Zhang W,Luo L N,et al.Extraordinary optical transmission properties of multilayer metallic slit arrays(in Chinese).Sci Sin-Phys Mech Astron,2015,45:024202[聂俊英,张宛,罗李娜,等.多层膜金属狭缝阵列的光学异常透射特性.中国科学:物理学力学天文学,2015,45:024202]
    33 Johnson P B,Christy R W.Optical constants of the noble metals.Phys Rev B,1972,6:4370-4379

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700