Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling
  • 作者:王一男 ; 李帅星 ; 刘悦 ; 王莉
  • 英文作者:Yi-Nan Wang;Shuai-Xing Li;Yue Liu;Li Wang;College of Science, Liaoning Shihua University;Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education),Dalian University of Technology;
  • 英文关键词:dual frequency;;secondary electron emission;;atmospheric pressure discharge
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:College of Science, Liaoning Shihua University;Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education),Dalian University of Technology;
  • 出版日期:2019-02-15
  • 出版单位:Chinese Physics B
  • 年:2019
  • 期:v.28
  • 基金:Project supported by the National Natural Science Foundation of China(Grant No.11505089)
  • 语种:英文;
  • 页:ZGWL201902046
  • 页数:6
  • CN:02
  • ISSN:11-5639/O4
  • 分类号:346-351
摘要
A one-dimensional(1D) fluid simulation of dual frequency discharge in helium gas at atmospheric pressure is carried out to investigate the role of the secondary electron emission on the surfaces of the electrodes. In the simulation, electrons,ions of He~+ and He_2~+, metastable atoms of He*and metastable molecules of He*_2 are included. It is found that the secondary electron emission coefficient significantly influences plasma density and electric field as well as electron heating mechanisms and ionization rate. The particle densities increase with increasing SEE coefficient from 0 to 0.3 as well as the sheath's electric field and electron source. Moreover, the SEE coefficient also influences the electron heating mechanism and electron power dissipation in the plasma and both of them increase with increasing SEE coefficient within the range from 0 to 0.3 as a result of increasing of electron density.
        A one-dimensional(1D) fluid simulation of dual frequency discharge in helium gas at atmospheric pressure is carried out to investigate the role of the secondary electron emission on the surfaces of the electrodes. In the simulation, electrons,ions of He~+ and He_2~+, metastable atoms of He*and metastable molecules of He*_2 are included. It is found that the secondary electron emission coefficient significantly influences plasma density and electric field as well as electron heating mechanisms and ionization rate. The particle densities increase with increasing SEE coefficient from 0 to 0.3 as well as the sheath's electric field and electron source. Moreover, the SEE coefficient also influences the electron heating mechanism and electron power dissipation in the plasma and both of them increase with increasing SEE coefficient within the range from 0 to 0.3 as a result of increasing of electron density.
引文
[1] Goto H H, Lowe H D and Ohmi T 1993 IEEE Trans. Semicond. Manufacuring 6 58
    [2] Booth J P, Curley G, Marie D and Chabert P 2010 Plasma Sources Sci.Technol. 19 015005
    [3] Brian G H, Czarnetzki U, Brinkmann R P and Mussenbrock T 2008 J.Phys. D:Appl. Phys. 41 165202
    [4] Bi Z H, Xu X, Liu Y X, Jiang X Z, Lu W Q and Wang Y N 2011Plasma Sci. Technol. 13 181
    [5] Schulze J, Donko Z, Schungel E and Czarnetzki U 2011 Plasma Source Sci.Technol. 20 045007
    [6] Georgieva V, Bogaerts A and Gijbels R 2003 J. Appl. Phys. 94 3748
    [7] Boyle P C, Ellingboe A R and Turner M M 2004 J. Phys. D:Appl.Phys. 37 697
    [8] Zhang Z L and Nie Q Y 2015 The 3rd International Conference on Electric Power Equipment-Switching Technology(ICEPE-ST), October 25-28, 2015, Busan, Korea pp. 443-446
    [9] Cao Z, Nie Q Y and Kong M G 2009 J. Phys. D:Appl. Phys. 42 222003
    [10] Wang Q, Sun J Z, Zhang J H, Ding Z F and Wang D Z 2010 Phys.Plasma 17 053506
    [11] Walsh J L and Kong M G 2008 Appl. Phys. Lett. 93 111501
    [12] Waskoenig J and Gans T 2010 Appl. Phys. Lett. 96 181501
    [13] Kim D B, Moon S Y, Jung H, Gweon B and Choec W 2010 Phys.Plasma 17 053508
    [14] Zhang Z L, Lim J W M, Nie Q Y, Zhang X N and Jiang B H 2017 AIP Adv. 7 105313
    [15] Liu Y, Peeters F J J, Starostin S A, Sanden M C M and Vries H W 2018Plasma Sources Sci. Technol. 27 01LTO1
    [16] Greb A, Gibson A R, Niemi K, O'Connell D and Gans T 2015 Plasma Scources Sci. Technol. 24 044003
    [17] Shang W L, Wang D Z and Zhang Y T 2008 Phys. Plasma 15 093903
    [18] Larouci B, Bendella S and Belasri A 2018 Plasma Sci. Technol. 20035403
    [19] Yao C W, Ma H C, Chang Z S, Li P, Mu H B and Zhang G J 2017 Acta Phys. Sin. 66 025203(in Chinese)
    [20] Wang Y N, Li S X, Wang L, Jin Y, Zhang Y H and Liu Y 2018 Plasma Sci. Technol. 20 115402
    [21] Wang Q, Sun J Z and Wang D Z 2009 Phys. Plasma 16 043503
    [22] Zhu X M and Kong M G 2005 J. Appl. Phys. 97 083301
    [23] Zhang Y T and Cui S Y 2011 Phys. Plasma 18 083509
    [24] Baars-Hibbe L, Sichler P, Schrader C, et al. 2005 J. Phys. D:Appl.Phys. 38510
    [25] Hagstrum H D 1960 Phys. Rev. 119 940
    [26] Sosov Y and Theodosiou C E 2004 J. Appl. Phys. 95 4385
    [27] Huang X J, Dai L and Guo Y, et al. 2015 Phys. Plasma 22 103515
    [28] Yuan X H and Raja L L 2003 IEEE Trans. Plasma Sci. 31 495
    [29] Liu Q, Liu Y, Samir T and Ma Z S 2014 Phys. Plasma 21 083511
    [30] Choi E H, Lim J Y, Kim Y G, Ko J J, Kim D I, Lee C W and Cho G S1999 J. Appl. Phys. 86 6525
    [31] Korolov I, Derzsi A, Donko Z and Schulze J 2013 Appl. Phys. Lett. 103064102
    [32] Lafteur T, Chabert P and Booth J P 2014 Plasma Sources Sci. Technol.23 035010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700