碳修饰氧化锌(C-ZnO)微球的合成及其可见光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:SYNTHESIS OF CARBON MODIFIED ZINC OXIDE(C-ZnO) MICROSPHERES AND ITS VISIBLE-LIGHT PHOTOCATALYTIC PERFORMANCE
  • 作者:张权 ; 袁健 ; 李贤英
  • 英文作者:ZHANG Quan;YUAN Jian;LI Xian-ying;College of Environmental Science and Engineering,Donghua University;
  • 关键词:碳修饰 ; ZnO微球 ; 可见光光催化
  • 英文关键词:carbon-modified;;ZnO microspheres;;visible light photocatalysis
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:东华大学环境科学与工程学院;
  • 出版日期:2019-06-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.252
  • 语种:中文;
  • 页:HJGC201906017
  • 页数:7
  • CN:06
  • ISSN:11-2097/X
  • 分类号:86-92
摘要
以硝酸锌为锌源,D(+)-一水合葡萄糖为碳源,六亚甲基四胺为碱源,柠檬酸钠为表面活性剂,采用水热处理高温碳化法成功制备得到碳修饰的ZnO(C-ZnO)微球。并以罗丹明B(RhB)为模型污染物,考察了不同水热温度、水热时间、碳源投加量下的C-ZnO微球的光催化性能。采用热重分析(TG)、X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、低温氮气吸附-脱附、傅里叶红外光谱(FT-IR)、Zeta电位、紫外-可见漫反射吸收光谱(UV-vis DRS)对样品进行表征。研究结果表明:在0. 3 g的碳源投加量,水热温度为160℃下反应14 h后,于700℃氩气氛围中高温碳化所制备的C-ZnO微球具有最佳的光催化活性。在可见光照射下,对碳修饰氧化锌微球RhB的降解率是未修饰ZnO微球降解率的2. 3倍,可达88. 17%。
        Carbon modified zinc oxide( C-ZnO) microspheres were synthesized with high temperature carbonization method after hydrothermal process,with zinc nitrate as zinc source,D( +)-dextrose hydrate as carbon source,hexamine as alkali source,sodium citrate as surfactant,respectively. The photocatalytic performance of C-ZnO microspheres with different hydrothermal temperature,hydrothermal time and carbon source additions was analyzed with RhB as model pollutant. The samples were characterized by thermogravimetric analysis( TG),X-ray diffraction( XRD),field-emission scanning electron microscope( FESEM),low-temperature nitrogen absorption-adsorption,Fourier Transform infrared spectroscopy( FT-IR),Zeta potential,UVvis diffuse reflectance spectra( UV-vis DRS). The results showed that: the C-ZnO microspheres prepared through high temperature carbonation under 700 ℃ in argon atmosphere,after hydrothermal reaction for 14 h,at water temperature of 160 ℃with 0. 3 g carbon source dosage had the best photocatalytic activity. Under visible light irradiation,the degradation efficiency of RhB was up to 88. 17%,which was almost 2. 3 times higher than that of unmodified Zn O microspheres.
引文
[1] Wang H,Liu X,Wang S L,et al. Dual templating fabrication of hierarchical porous three-dimensional ZnO/carbon nanocomposites for enhanced photocatalytic and photoelectrochemical activity[J].Applied Catalysis B:Environmental,2018,222:209-218.
    [2] Kansal S K,Singh M,Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts[J]. Journal of Hazardous Materials,2007,141(3):581-590.
    [3] Ullattil S G, Periyat P,Naufal B,et al. Self-doped ZnO microrods—high temperature stable oxygen deficient platforms for solar photocatalysis[J]. Industrial&Engineering Chemistry Research,2016,55(22):6413-6421.
    [4] Sakthivel S,Neppolian B,Shankar M V,et al. Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and Ti O2[J]. Solar Energy Materials&Solar Cells,2003,77(1):65-82.
    [5] Daneshvar N,Salari D,Khataee A R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to Ti O2[J]. Journal of Photochemistry&Photobiology A Chemistry,2004,162(2/3):317-322.
    [6] Khodja A A,Sehili T,Pilichowski J F,et al. Photocatalytic degradation of 2-phenylphenol on Ti O2and ZnO in aqueous suspensions[J]. Journal of Photochemistry&Photobiology A:Chemistry,2001,141(2/3):231-239.
    [7] Lin C J,Liao S J,Kao L C,et al. Photoelectrocatalytic activity of a hydrothermally grown branched ZnO nanorod-array electrode for paracetamol degradation[J]. Journal of Hazardous Materials,2015,291:9-17.
    [8] Ko S H,Lee D,Kang H W,et al. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dyesensitized solar cell[J]. Nano Letters,2011,11(2):666-671.
    [9] Vessalli B A,Zito C A,Perfecto T M,et al. ZnO nanorods/graphene oxide sheets prepared by chemical bath deposition for volatile organic compounds detection[J]. Journal of Alloys&Compounds,2017,696(C):996-1003.
    [10] Ansari S A,Cho M H. Facile and sustainable synthesis of carbondoped ZnO nanostructures towards the superior visible light photocatalytic performance[J]. New Journal of Chemistry,2017,41:9314-9320.
    [11] Hui A,Ma J,Liu J,et al. Morphological evolution of Fe doped sea urchin-shaped ZnO nanoparticles with enhanced photocatalytic activity[J]. Journal of Alloys&Compounds,2017,696:639-647.
    [12] Sin J C,Lam S M. Hydrothermal synthesis of europium-doped flower-like ZnO hierarchical structures with enhanced sunlight photocatalytic degradation of phenol[J]. Materials Letters,2016,182:223-226.
    [13] Zhao S W,Zuo H F,Guo Y R,et al. Carbon-doped ZnO aided by carboxymethyl cellulose:fabrication, photoluminescence and photocatalytic applications[J]. Journal of Alloys&Compounds,2017,695:1029-1037.
    [14] Nguyen V N, Tran D T, Nguyen M T, et al. Enhanced photocatalytic degradation of methyl orange using ZnO/graphene oxide nanocomposites[J]. Research on Chemical Intermediates,2018,44(5):3081-3095.
    [15] Ma S S,Xue J J,Zhou Y M,et al. A facile route for the preparation of ZnO/C composites with high photocatalytic activity and adsorption capacity[J]. Crystengcomm,2014,16(21):4478-4484.
    [16] Akir S,Hamdi A,Addad A,et al. Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance[J]. Applied Surface Science,2017,400:461-470.
    [17] Wang H,Qiu X Q,Liu W F,et al. Facile preparation of wellcombined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity[J]. Applied Surface Science,2017,426:206-216.
    [18] Chae A,Jo S,Choi Y,et al. Visible-light-driven photocatalysis with dopamine-derivatized titanium dioxide/N-doped carbon core/shell nanoparticles[J]. Journal of Materials Science,2017,52(10):5582-5588.
    [19] Cho S, Jang J W, Lee J S, et al. Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis[J]. Cryst Eng Comm,2010,12(11):3929-3935.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700