Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering
  • 作者:Qian-Qian ; Chu ; Bin ; Ding ; Jun ; Peng ; Heping ; Shen ; Xiaolei ; Li ; Yan ; Liu ; Cheng-Xin ; Li ; Chang-Jiu ; Li ; Guan-Jun ; Yang ; Thomas ; P.White ; Kylie ; R.Catchpole
  • 英文作者:Qian-Qian Chu;Bin Ding;Jun Peng;Heping Shen;Xiaolei Li;Yan Liu;Cheng-Xin Li;Chang-Jiu Li;Guan-Jun Yang;Thomas P.White;Kylie R.Catchpole;State Key Laboratory for Mechanical Behavior of Materials,School of Materials Science and Engineering,Xi’an Jiaotong University;Research School of Engineering,The Australian National University;
  • 英文关键词:Planar carbon-based perovskite solar cells;;Hole transport engineering;;Recorded efficiency;;Excellent moisture and light stability
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:State Key Laboratory for Mechanical Behavior of Materials,School of Materials Science and Engineering,Xi’an Jiaotong University;Research School of Engineering,The Australian National University;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported by the National Program for Support of Top-notch Young Professionals and the Australian Government through the Australian Renewable Energy Agency(ARENA)
  • 语种:英文;
  • 页:CLKJ201906005
  • 页数:7
  • CN:06
  • ISSN:21-1315/TG
  • 分类号:33-39
摘要
Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in air, compared to their counterparts using metal contacts. The photovoltaic performance of carbon-based PSCs, however, has been progressing slowly in spite of an impressive efficiency when they were first reported. One of the major obstacles is that the hole transport materials developed for stateof-the-art Au-based PSCs are not suitable for carbon-based PSCs. Here, we develop a low-temperature,solution-processed Poly(3-hexylthiophene-2,5-diyl)(P3 HT)/graphene composite hole transport layer(HTL), that is compatible with paintable carbon-electrodes to produce state-of-the-art perovskite devices. Space-charge-limited-current measurements reveal that the as-prepared P3 HT/graphene composite exhibits outstanding charge mobility and thermal tolerance, with hole mobility increasing from8.3 × 10~(-3) cm~2 V~(-1) s~(-1)(as-deposited) to 1.2 × 10~(-2) cm~2 V~(-1) s~(-1)(after annealing at 100°C)-two orders of magnitude larger than pure P3 HT. The improved charge transport and extraction provided by the composite HTL provides a significant efficiency improvement compared to cells with a pure P3 HT HTL. As a result, we report carbon-based solar cells with a record efficiency of 17.8%(certified by Newport); and the first perovskite cells to be certified under the stabilized testing protocol. The outstanding device stability is demonstrated by only 3% drop after storage in ambient conditions(humidity: ca. 50%) for 1680 h(nonencapsulated), and retention of ca. 89% of their original output under continuous 1-Sun illumination at room-temperature for 600 h(encapsulated) in a nitrogen environment.
        Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in air, compared to their counterparts using metal contacts. The photovoltaic performance of carbon-based PSCs, however, has been progressing slowly in spite of an impressive efficiency when they were first reported. One of the major obstacles is that the hole transport materials developed for stateof-the-art Au-based PSCs are not suitable for carbon-based PSCs. Here, we develop a low-temperature,solution-processed Poly(3-hexylthiophene-2,5-diyl)(P3 HT)/graphene composite hole transport layer(HTL), that is compatible with paintable carbon-electrodes to produce state-of-the-art perovskite devices. Space-charge-limited-current measurements reveal that the as-prepared P3 HT/graphene composite exhibits outstanding charge mobility and thermal tolerance, with hole mobility increasing from8.3 × 10~(-3) cm~2 V~(-1) s~(-1)(as-deposited) to 1.2 × 10~(-2) cm~2 V~(-1) s~(-1)(after annealing at 100°C)-two orders of magnitude larger than pure P3 HT. The improved charge transport and extraction provided by the composite HTL provides a significant efficiency improvement compared to cells with a pure P3 HT HTL. As a result, we report carbon-based solar cells with a record efficiency of 17.8%(certified by Newport); and the first perovskite cells to be certified under the stabilized testing protocol. The outstanding device stability is demonstrated by only 3% drop after storage in ambient conditions(humidity: ca. 50%) for 1680 h(nonencapsulated), and retention of ca. 89% of their original output under continuous 1-Sun illumination at room-temperature for 600 h(encapsulated) in a nitrogen environment.
引文
[1] H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer, J.Z. Fan, R.Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y.Zhao, Z.H. Lu, Z. Yang, S. Hoogland, E.H. Sargent, Science 355(2017)722–726.
    [2] M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin,J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Gr?tzel, Science 354(2016)206–209.
    [3] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347(2015)967–970.
    [4] W. Nie, H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet,M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D. Mohite, Science 347(2015)522–525.
    [5] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338(2012)643–647.
    [6] W. Li, C. Zhang, Y. Ma, C. Liu, J. Fan, Y. Mai, R.E.I. Schropp, Energy Environ. Sci.11(2018)286–293.
    [7] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131(2009)6050–6051.
    [8] N.J. Jeon, H. Na, E.H. Jung, T.Y. Yang, Y.G. Lee, G. Kim, H.W. Shin, S.I. Seok, J. Lee,J. Seo, Nat. Energy 3(2018)682–689.
    [9] M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photon. 8(2014)506–514.
    [10] T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E.C. Wang, T.C. Kho, K.C.Fong, M. Stocks, E. Franklin, A. Blakers, N. Zin, K. Mclntosh, W. Li, Y.B. Cheng,T.P. White, K. Weber, K. Catchpole,Adv. Energy Mater. 7(2017), 1700228.
    [11] H. Shen, T. Duong, J. Peng, D. Jacobs, N. Wu, J. Gong, Y. Wu, S.K. Karuturi, X. Fu,K. Weber, X. Xiao, T.P. White, K. Catchpole, Energy Environ. Sci. 11(2018)394–406.
    [12] J. Peng, J.I. Khan, W. Liu, E. Ugur, T. Duong, Y. Wu, H. Shen, K. Wang, H. Dang, E.Aydin, X. Yang, Y. Wan, K.J. Weber, K.R. Catchpole, F. Laquai, S. De Wolf, T.P.White,Adv. Energy Mater. 8(2018), 1801208.
    [13] W. Ke, G. Fang, J. Wang, P. Qin, H. Tao, H. Lei, Q. Liu, X. Dai, X. Zhao, ACS Appl.Mater. Interfaces 6(2014)15959–15965.
    [14] M. Kim, S.G. Motti, R. Sorrentino, A. Petrozza, Energy Environ. Sci. 11(2018)2609–2619.
    [15] Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J.You,Adv. Mater. 29(2017), 1703852.
    [16] B. Ding, S.Y. Huang, Q.Q. Chu, Y. Li, C.X. Li, C.J. Li, G.J. Yang, J. Mater. Chem. A Mater. Energy Sustain. 6(2018)10233–10242.
    [17] D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya, S. Liu,Nat. Commun. 9(2018)3239.
    [18] K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M.Saliba, W. Tress, A. Hagfeld, M. Gr?tzel, ACS Nano 10(2016)6306–6314.
    [19] F. Ambrosion, J. Wiktor, F.D. Angelis, A. Pasquarello, Energy Environ. Sci. 11(2018)101–105.
    [20] J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H.S. Jung, M. Choi, Energy Environ. Sci.10(2017)337–345.
    [21] Q.Q. Chu, B. Ding, Q. Qiu, Y. Liu, C.X. Li, C.J. Li, G.J. Yang, B. Fang, J. Mater. Chem.A Mater. Energy Sustain. 6(2018)8271–8279.
    [22] K.G. Reddy, T.G. Deepak, G.S. Anjusree, S. Thomas, S. Vadukumpully, K.R.V.Subramanian, S.V. Nair, A.S. Nair, Phys. Chem. Chem. Phys. 16(2014)6838–6858.
    [23] A. Mei, X. Li, L. Iiu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M.Gr?tzel, H. Han, Science 345(2014)295–298.
    [24] Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, S. Yang,Energy Environ. Sci. 7(2014)3326–3333.
    [25] H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, T. Ma, J. Phys.Chem. Lett. 5(2014)3241–3246.
    [26] Q.Q. Chu, B. Ding, Y. Li, L.L. Gao, Q. Qiu, C.X. Li, C.J. Li, G.J. Yang, B. Fang, ACS Sustain. Chem. Eng. 5(2017)9758–9765.
    [27] Y.S. Kwon, J. Lim, H.J. Yun, Y.H. Kim, T. Park, Energy Environ. Sci. 7(2014)1454–1460.
    [28] Y. Li, B. Ding, G.J. Yang, C.J. Li, C.X. Li, J. Mater. Sci. Technol. 34(2018)1405–1411.
    [29] S. Gholipour, J.P. Correa-Baena, K. Domanski, T. Matsui, L. Steier, F. Ciordano,F. Tajabadi, W. Tress, M. Saliba, A. Abate, A.M. Ali, N. Taghaivinia, M. Gr?tzel, A.Hagfeldt,Adv. Energy Mater. 6(2016), 1601116.
    [30] K. Aitola, K. Domanski, J.P. Correa-Baem, K. Sveinbj?rnsson, M. Saliba, A.Abate, M. Gr?tzel, E. Kauppinen, E.M.J. Johansson, W. Tress, A. Hagfeldt, G.Boschloo,Adv. Mater. 29(2017), 1606398.
    [31] J. Huang, S. Tan, P.D. Lund, H. Zhou, Energy Environ. Sci. 10(2017)2284–2311.
    [32] D. Seol, A. Jeong, M.H. Han, S. Seo, T.S. Yoo, W.S. Choi, H.S. Jung, H. Shin, Y.Kim,Adv. Funct. Mater. 27(2017), 1701924.
    [33] Y.C. Kim, T.Y. Yang, N.J. Jeon, J. Im, S. Jang, T.J. Shin, H.W. Shin, S. Kim, E. Lee, S.Kim, J.H. Noh, S.I. Seok, J. Seo, Energy Environ. Sci. 10(2017)2109–2116.
    [34] G.W. Kim, G. Kang, M.M. Byranvand, G.Y. Lee, T. Park, ACS Appl. Mater.Interfaces 9(2017)27720–27726.
    [35] S.N. Habisreutinger, R.J. Nicholas, H.J. Snaith,Adv. Energy Mater. 7(2017),1601839.
    [36] G.W. Kim, J. Lee, G. Kang, T. Kim, T. Park,Adv. Energy Mater. 8(2018), 1701935.
    [37] J. Ye, X. Li, J. Zhao, X. Mei, Q. Li, RSC Adv. 6(2016)36356–36361.
    [38] W. Qin, G. Ding, X. Xu, L. Yang, S. Yin, J. Mater. Sci. Technol. 30(2014)197–202.
    [39] X. Zheng, H. Chen, Z. Wei, Y. Yang, H. Lin, S. Yang, Front. Optoelectron. China 9(2016)71–80.
    [40] S. Liu, W. Huang, P. Liao, N. Pootrakulchote, H. Li, J. Lu, J. Li, F. Huang, X. Shai,X. Zhao, Y. Shen, Y.B. Cheng, M. Wang, J. Mater. Chem. A Mater. Energy Sustain. 5(2017)22952–22958.
    [41] M. Haider, C. Zhen, T. Wu, G. Liu, H.M. Cheng, J. Mater. Sci. Technol. 34(2018)1474–1480.
    [42] H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, S. Dai, Chem. Commun.49(2013)7277–7279.
    [43] G.J. Yang, Y. Liu, Q.Q. Chu, B. Ding, C.J. Li, C.X. Li, China Patent, No.201810898511.8, 2018.
    [44] P.W.M. Blom, M.J.M. de Jong, J.J.M. Vleggaar, Appl. Phys. Lett. 68(1996)3308–3310.
    [45] Z. Chen, H. Li, X. Zheng, Q. Zhang, Z. Li, Y. Hao, G. Fang, ChemSusChem 10(2017)3111–3117.
    [46] Z. Zhou, X. Li, M. Cai, F. Xie, Y. Wu, Z. Lan, X. Yang, Y. Qiang, A. Islam, L.Han,Adv. Energy Mater. 7(2017), 1700763.
    [47] R. Zhang, Y. Chen, J. Xiong, X. Liu, J. Mater. Sci. 53(2018)4507–4514.
    [48] X. Jiang, Z. Yu, H.B. Li, Y. Zhao, J. Qu, J. Lai, W. Ma, D. Wang, X. Yang, L. Sun, J.Mater. Chem. A Mater. Energy Sustain. 5(2017)17862–17866.
    [49] J. Peng, Y. Wu, W. Ye, D.A. Jacobs, H. Shen, X. Fu, Y. Wan, T. Duong, N. Wu, C.Barugkin, H.T. Nguyen, D. Zhong, J. Li, T. Lu, Y. Liu, M.N. Lockrey, K.J. Weber,K.R. Catchpolea, T.P. White, Energy Environ. Sci. 10(2017)1792–1800.
    [50] M. Stolterfoht, C.M. Wolff, J.A. Márquez, S. Zhang, C.J. Hages, D. Rothhardt, S.Albrecht, P.L. Burn, P. Meredith, T. Unold, D. Neher, Nat. Energy 3(2018)847–854.
    [51] L.L. Gao, L.S. Liang, X.X. Song, B. Ding, G.J. Yang, B. Fan, C.X. Li, C.J. Li, J. Mater.Chem. A Mater. Energy Sustain. 4(2016)3704–3710.
    [52] B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, C.Li, ACS Appl. Mater. Interfaces 8(2016)20067–20073.
    [53] B. Ding, Y. Li, S.Y. Huang, Q.Q. Chu, C.X. Li, C.J. Li, G.J. Yang, J. Mater. Chem. A Mater. Energy Sustain. 5(2017)6840–6848.
    [54] G.J. Yang, C.J. Li, C.X. Li, L.L. Gao, B. Ding, China Patent, No. CN105702870A,2016.
    [55] H. Zhou, Y. Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du, T. Ma, J. Phys. Chem. C119(2015)4600–4605.
    [56] Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Nano-Micro Lett. 10(2018)34.
    [57] X. Zheng, H. Lei, G. Yang, W. Ke, Z. Chen, C. Chen, J. Ma, Q. Guo, F. Yao, Q.Zhang, H. Xu, G. Fang, Nano Energy 38(2017)1–11.
    [58] J. Cao, H. Yu, S. Zhou, M. Qin, T.K. Lau, X. Lu, N. Zhao, C.P. Wong, J. Mater.Chem. A Mater. Energy Sustain. 5(2017)11071–11077.
    [59] J. Huang, X. Yu, J. Xie, D. Xu, Z. Tang, C. Cui, D. Yang, ACS Appl. Mater.Interfaces 8(2016)21505–21511.
    [60] C. Liu, Y. Yang, Y. Ding, J. Xu, X. Liu, B. Zhang, J. Yao, T. Hayat, A. Alsaedi, S. Dai,ChemSusChem 11(2018)1232–1237.
    [61] G. Wu, Y. Zhang, R. Kaneko, Y. Kojima, K. Sugawa, T.H. Chowdhury, A. Islam, Q.Shen, M. Akhtaruzzaman, T. Noda, J. Otsuki,Sol. RRL 1(2017), 1700096.
    [62] E. Bi, H. Chen, F. Xie, Y. Wu, W. Chen, Y. Su, A. Islam, M. Gr?tzel, X. Yang, L.Han, Nat. Commun. 8(2017)15330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700