Size effect in the melting and freezing behaviors of Al/Ti core-shell nanoparticles using molecular dynamics simulations
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Size effect in the melting and freezing behaviors of Al/Ti core-shell nanoparticles using molecular dynamics simulations
  • 作者:张金平 ; 张洋洋 ; 王二萍 ; 唐翠明 ; 程新路 ; 张秋慧
  • 英文作者:Jin-Ping Zhang;Yang-Yang Zhang;Er-Ping Wang;Cui-Ming Tang;Xin-Lu Cheng;Qiu-Hui Zhang;College of Information Engineering, Huanghe Science and Technology College;Institute of Atomic and Molecular Physics, Sichuan University;Department of Electrical Information Engineering, Henan Institute of Engineering;
  • 英文关键词:molecular dynamics;;melting;;radial distribution function;;structure evolution
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:College of Information Engineering Huanghe Science and Technology College;Institute of Atomic and Molecular Physics Sichuan University;Department of Electrical Information Engineering Henan Institute of Engineering;
  • 出版日期:2016-03-15
  • 出版单位:Chinese Physics B
  • 年:2016
  • 期:v.25
  • 基金:Project supported by the National Natural Science Foundation of China(Grant No.21401064);; the Science&Technology Development Program of Henan Province,China(Grant No.142300410282);; the Program of Henan Educational Committee,China(Grant No.13B140986)
  • 语种:英文;
  • 页:ZGWL201603042
  • 页数:6
  • CN:03
  • ISSN:11-5639/O4
  • 分类号:281-286
摘要
The thermal stability of Ti@Al core/shell nanoparticles with different sizes and components during continuous heating and cooling processes is examined by a molecular dynamics simulation with embedded atom method. The thermodynamic properties and structure evolution during continuous heating and cooling processes are investigated through the characterization of the potential energy, specific heat distribution, and radial distribution function(RDF). Our study shows that, for fixed Ti core size, the melting temperature decreases with Al shell thickness, while the crystallizing temperature and glass formation temperature increase with Al shell thickness. Diverse melting mechanisms have been discovered for different Ti core sized with fixed Al shell thickness nanoparticles. The melting temperature increases with the Ti core radius. The trend agrees well with the theoretical phase diagram of bimetallic nanoparticles. In addition, the glass phase formation of Al–Ti nanoparticles for the fast cooling rate of 12 K/ps, and the crystal phase formation for the low cooling rate of 0.15 K/ps. The icosahedron structure is formed in the frozen 4366 Al–Ti atoms for the low cooling rate.
        The thermal stability of Ti@Al core/shell nanoparticles with different sizes and components during continuous heating and cooling processes is examined by a molecular dynamics simulation with embedded atom method. The thermodynamic properties and structure evolution during continuous heating and cooling processes are investigated through the characterization of the potential energy, specific heat distribution, and radial distribution function(RDF). Our study shows that, for fixed Ti core size, the melting temperature decreases with Al shell thickness, while the crystallizing temperature and glass formation temperature increase with Al shell thickness. Diverse melting mechanisms have been discovered for different Ti core sized with fixed Al shell thickness nanoparticles. The melting temperature increases with the Ti core radius. The trend agrees well with the theoretical phase diagram of bimetallic nanoparticles. In addition, the glass phase formation of Al–Ti nanoparticles for the fast cooling rate of 12 K/ps, and the crystal phase formation for the low cooling rate of 0.15 K/ps. The icosahedron structure is formed in the frozen 4366 Al–Ti atoms for the low cooling rate.
引文
[1]Djanarthany S,Viala J C and Bouix J 2001 Mater.Chem.Phys.72 301
    [2]Niu H Z,Kong F T,Chen Y Y and Yang F 2011 J.Alloy.Comp.50910179
    [3]Forouzanmehr N,Karimzadeh F and Enayati M H 2009 J.Alloy.Comp.471 93
    [4]Vaucher S,Stir M,Ishizaki K,Catala-Civera J M and Nicula R 2011Thermochim.Acta 522 151
    [5]Sun Y,Vajpai S K,Ameyama K and Ma C 2014 J.Alloy.Comp.585734
    [6]Liu T,Zhang T W,Zhu M and Qin C G 2012 J.Nanopart.Res.14 738
    [7]Sienkiewicz J,Kuroda S,Molak R M,Murakami H,Araki H,Takamori S and Kurzyd?owski K J 2014 Intermetallics 49 57
    [8]Nogorani F S,Ashrafizadeh F and Saatchi A 2012 Surf.Coat.Tech.21097
    [9]Garbacz H,Pouquet J M,Garc′?a-Lecina E,D′?az-Fuentes M,Wieci n′ski P,Martin R H,Wierzcho n′T and Kurzydlowski K J 2011 Surf.Coat.Tech.205 4433
    [10]Ryu J R,Moon K II and Lee K S 2000 J.Alloy.Comp.296 157
    [11]Patselov A,Greenberg B,Gladkovskii S,Lavrikov R and Borodin E2012 AASRI Procedia 3 107
    [12]Li X W,Sun H F,Fang W B and Ding Y F 2011 Trans.Nonferrous Met.Soc.China 21 s338
    [13]Zhou K,Wang H P and Wei B 2012 Chem.Phys.Lett.521 52
    [14]Pei Q X,Lu C and Fu M W 2004 J.Phys.:Condens.Matter 16 4203
    [15]Xie Z C,Gao T H,Guo X T,Qin X M and Xie Q 2014 J.Non-Cryst.Solid.394 16
    [16]Kiselev S P and Zhirov E V 2014 Intermetallics 49 106
    [17]Koizumi Y,Yoshiya M,Sugihara A and Minamino Y 2011 Philos.Mag.91 3685
    [18]Tan X Q,Chen J,Zhi W and Brown J 2010 Physica B 405 3543
    [19]Levchenko E V,Evteev A V,L o¨wisch G G,Belova I V and Murch G E2012 Intermetallics 22 193
    [20]Levchenko E V,Evteev A V,Lorscheider T,Belova I V and Murch G E 2013 Comp.Mater.Sci.79 316
    [21]Moon K II and Lee K S 1999 J.Alloy.Compd.291 312
    [22]Bhattacharya P,Bellon P,Averback R S and Hales S J 2004 J.Alloy.Compd.368 187
    [23]Shu S L,Qiu F,Tong C Z,Shan X N and Jiang Q C 2014 J.Alloy.Copmd.617 302
    [24]Song P and Wen D 2010 J.Phys.Chem.C 114 8688
    [25]Wen Y H,Huang R,Li C,Zhu Z Z and Sun S G 2012 J.Mater.Chem.22 7380
    [26]Cheng D and Hou M 2010 Eur.Phys.J.B 74 379
    [27]Huang R,Wen Y H,Shao G F,Zhu Z Z and Sun S G 2013 J.Phys.Chem.C 117 6896
    [28]Huang R,Wen Y H,Shao G F and Sun S G 2013 J.Phys.Chem.C 1174278
    [29]Cheng X L,Zhang J P,Zhang H and Zhao F 2013 J.Appl.Phys.114084310
    [30]Plimpton S 1995 J.Comput.Phys.117 1
    [31]Zope R R and Mishin Y 2003 Phys.Rev.B 68 024102
    [32]Pezold J von,Dick A,Fria′k M and Neugebauer J 2010 Phys.Rev.B 81094203
    [33]Qi Y,Cagin T,Johnson W L and Goddard W A 2001 J.Chem.Phys.115 385
    [34]Cao B,Starace A K,Judd O H and Jarrold M F 2009 J.Am.Chem.Soc.131 2446
    [35]Kambara M,Uenishi K and Kobayashi K F 2000 J.Mater.Sci.35 2897
    [36]Li G J,Wang Q,Cao Y Z,Lu¨X,Li D G and He J C 2011 Acta Phys.Sin.60 093601(in Chinese)
    [37]Wendt H R and Abraham F F 1978 Phys.Rev.Lett.41 1244
    [38]Nam H S,Hwang N M,Yu B D and Yoom J K 2002 Phys.Rev.Lett.89275502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700