矿用卷缆装置三级调速液压系统研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on hydraulic system with three-stage speed regulation of mine-used cable winding device
  • 作者:李朋朋 ; 张丹 ; 孟祥强 ; 曹连民 ; 孙宝海
  • 英文作者:LI Pengpeng;ZHANG Dan;MENG Xiangqiang;CAO Lianmin;SUN Baohai;College of Mechanical and Electronic Engineering,Shandong University of Science and Technology;School of Traffic Engineering,Shandong Traffic Technician College;Yihe Electric Group Co.,Ltd.;
  • 关键词:连续采煤机 ; 矿用卷缆装置 ; 三级调速液压系统 ; 变速调节 ; 液压马达 ; 节流阀 ; 压力补偿阀
  • 英文关键词:continuous shearer;;mine-used cable winding device;;hydraulic system with three-stage speed regulation;;variable speed adjustment;;hydraulic motor;;throttle valve;;pressure compensation valve
  • 中文刊名:MKZD
  • 英文刊名:Industry and Mine Automation
  • 机构:山东科技大学机械电子工程学院;山东交通技师学院交通工程学院;益和电气集团股份有限公司;
  • 出版日期:2019-03-30 11:20
  • 出版单位:工矿自动化
  • 年:2019
  • 期:v.45;No.277
  • 基金:首批国家虚拟仿真实验教学项目(201806022);; 矿业工程国家级实验教学示范中心(山东科技大学)开放基金项目(KYSF20180206);; 山东科技大学教育教学研究“群星计划”项目(QX2018Z05)
  • 语种:中文;
  • 页:MKZD201904011
  • 页数:4
  • CN:04
  • ISSN:32-1627/TP
  • 分类号:62-65
摘要
针对电缆卷放速度与连续采煤机行进速度不能同步的问题,在分析卷缆装置三级调速液压系统原理的基础上,建立了三级调速液压系统仿真模型。该系统利用节流阀与压力补偿阀组合设计降低了设计复杂性,避免了压力补偿阀不工作时带来的能量损耗;实现了液压马达110,80,50r/min三级转速变化,从而实现了卷缆装置变速调节功能,保证了电缆卷放速度与连续采煤机行进速度的同步性。仿真和测试结果表明,节流阀控制较灵敏,回路流量变化较稳定;虽然在节流阀导通和截止瞬间管道流量存在轻微波动,但不影响整体控制效果;在压力补偿阀的作用下,系统管道压力基本稳定在14MPa,达到了较好的稳压、控压效果;测试得到的液压马达转速和转矩变化趋势与仿真结果基本吻合,三级调速效果较为明显。
        In view of the problem that cable winding speed cannot be synchronized with speed of continuous shearer,based on analysis of principle of hydraulic system with three-stage speed regulation of the cable winding device,simulation model of hydraulic system with three-stage speed regulation was established.The system uses combination design of throttle valve and pressure compensation valve to reduce design complexity and avoid energy loss when pressure compensation valve does not work.The three-stage speed regulation of 110,80,50 r/min of hydraulic motor is achieved,and so speed adjustment function of the cable winding device is realized,and synchronization of the cable winding speed and the continuous shearer traveling speed is ensured.The simulation and test results show that the throttle control is sensitive and the change of loop flow is stable;although there is slight fluctuation of pipeline flow at the opening and closing moments of the throttle valve,it does not affect the overall control effect;under the action of pressure compensation valve,the pipeline pressure of the system is basically stable at14 MPa,which achieves good regulation and control effect of pressure;the test results of speed and torquetrend of hydraulic motor are basically consistent with the simulation results,and the three-stage speed regulation effect is obvious.
引文
[1]王家臣,刘峰,王蕾.煤炭科学开采与开采科学[J].煤炭学报,2016,41(11):2651-2660.WANG Jiachen,LIU Feng,WANG Lei.Sustainable coal mining and mining sciences[J].Journal of China Coal Society,2016,41(11):2651-2660.
    [2]柏艳红,陈聪,孙志毅,等.基于AMESim的电液阀控缸系统线性化分析[J].系统仿真学报,2014,26(7):1430-1434.BAI Yanhong,CHEN Cong,SUN Zhiyi,et al.Linear analysis of electro-hydraulic valve-controlled cylinder system based on AMESim[J].Journal of System Simulation,2014,26(7):1430-1434.
    [3]周能文,王亚锋,王凯峰.基于AMESim的液压位置控制系统动态特性研究[J].机械工程与自动化,2010(4):82-84.ZHOU Nengwen,WANG Yafeng,WANG Kaifeng.Dynamic characteristics of hydraulic position control system based on AMESim[J].Mechanical Engineering&Automation,2010(4):82-84.
    [4]杨春晖,王建国,李京山,等.基于液压仿真和有限元的试验设备关键零件优化设计[J].机床与液压,2012,40(10):84-86.YANG Chunhui,WANG Jianguo,LI Jingshan,et al.Optimization design for key part of experimental equipment based on hydraulic simulation and FEM[J].Machine Tool&Hydraulics,2012,40(10):84-86.
    [5]钟声宇.一种电缆卷筒排缆装置的设计[J].机械制造,2013,51(4):59-60.
    [6]LI H N,DENG D A.Research on influence factors of hydraulic support moving velocity in coal mining based on AMESim[J].Advanced Materials Research,2014,1014:180-184.
    [7]陈庆贺.煤矿设备自动卷缆与行走的逻辑探讨[J].机床与液压,2015,43(20):121-122.CHEN Qinghe.The logic of automatic rolling cable and walking of coal mine equipment[J].Machine Tool&Hydraulics,2015,43(20):121-122.
    [8]唐倩,柳溢沛,杜雪松.拉丝机卷筒应力应变的有限元数值模拟[J].机械研究与应用,2017,30(2):25-27.TANG Qian,LIU Yipei,DU Xuesong.Finite element numerical simulation to stress and strain of drawing reel[J].Mechanical Research&Application,2017,30(2):25-27.
    [9]高海涛,许志沛,申士林.基于ANSYS Workbench的多层缠绕卷筒的结构优化设计[J].机械设计与制造,2013(6):15-17.GAO Haitao,XU Zhipei,SHEN Shilin.Optimization design of multilayer drum based on ANSYSWorkbench[J].Machinery Design&Manufacture,2013(6):15-17.
    [10]高立龙,马士友,阮宜武,等.基于AMESim的负载敏感液压系统的仿真研究[J].起重运输机械,2015(12):64-68.GAO Lilong,MA Shiyou,RUAN Yiwu,et al.AMESim-based simulation study on load sensitive hydraulic system[J].Hoisting and Conveying Machinery,2015(12):64-68.
    [11]ANTONELLI M,BACCIOLI A,FRANCESCONI M,et al.Small scale ORC plant modeling with the AMESim simulation tool:analysis of working fluid and thermodynamic cycle parameters influence[J].Energy Procedia,2015,81:440-449.
    [12]刘昕晖,陈晋市.AMESim仿真技术在液压系统设计分析中的应用[J].液压与气动,2015(11):1-6.LIU Xinhui,CHEN Jinshi.Application of AMESim in the design and analysis of hydraulic system[J].Chinese Hydraulics&Pneumatics,2015(11):1-6.
    [13]郑德帅,谷立臣,贾永峰,等.基于AMESim的电液负载模拟系统[J].机械设计与研究,2013,29(2):97-100.ZHENG Deshuai,GU Lichen,JIA Yongfeng,et al.Research on the electro-hydraulic load simulation based on AMESim software[J].Machine Design&Research,2013,29(2):97-100.
    [14]陶柳,何奇,彭松华,等.基于AMESim和MATLAB的隧道多功能台车联动调平回路仿真分析[J].机床与液压,2016,44(4):85-86.TAO Liu,HE Qi,PENG Songhua,et al.Simulation of linkage leveling loop of tunnel multi-function operations trolley based on AMESim and MATLAB[J].Machine Tool&Hydraulics,2016,44(4):85-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700