C_4作物电子传递速率对CO_2响应模型的构建及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction of CO_2-response model of electron transport rate in C_4 crop and its application
  • 作者:叶子飘 ; 段世华 ; 安婷 ; 康华靖
  • 英文作者:YE Zi-Piao;DUAN Shi-Hua;AN Ting;KANG Hua-Jing;College of Math and Physics, Jinggangshan University;School of Life Sciences, Jinggangshan University;Wenzhou Academy of Agricultural Sciences;
  • 关键词:C4作物 ; 电子传递速率 ; CO2响应 ; 电子流分配 ; 模型构建
  • 英文关键词:C4 crop;;electron transport rate;;CO2 response;;electron flow allocation;;model development
  • 中文刊名:ZWSB
  • 英文刊名:Chinese Journal of Plant Ecology
  • 机构:井冈山大学数理学院;井冈山大学生命科学学院;温州市农业科学研究院;
  • 出版日期:2018-10-20
  • 出版单位:植物生态学报
  • 年:2018
  • 期:v.42
  • 基金:国家自然科学基金(31560069)~~
  • 语种:中文;
  • 页:ZWSB201810003
  • 页数:9
  • CN:10
  • ISSN:11-3397/Q
  • 分类号:28-36
摘要
准确估算光合电子流对CO_2响应的变化趋势对深入了解光合过程具有重要意义。该研究在植物光合作用对CO_2响应新模型(模型I)的基础上构建了电子传递速率(J)对CO_2的响应模型(模型II),并对用LI-6400-40便携式光合仪测量的玉米(Zea mays)和千穗谷(Amaranthus hypochondriacus)的数据进行了拟合。结果表明,模型II可以很好地拟合玉米和千穗谷叶片J对CO_2浓度的响应曲线(J-Ca曲线),得到玉米和千穗谷的最大电子传递速率分别为262.41和393.07mmol·m~(-2)·s~(-1),与估算值相符合。在此基础上,对光合电子流分配到其他路径进行了探讨。结果显示, 380mmol·mol-1 CO_2浓度下玉米和千穗谷碳同化所需的电子流为247.92和285.16mmol·m~(-2)·s~(-1),分配到其他途径的光合电子流为14.49和107.91mmol·m~(-2)·s~(-1) (考虑植物CO_2的回收利用)。比较两种植物的其他途径光合电子流分配值发现,两者相差6倍之多。分析认为这与千穗谷和玉米的催化脱羧反应酶种类以及脱羧反应发生的部位不同密切相关。该发现为人们研究C_4植物中烟酰胺腺嘌呤二核苷磷酸苹果酸酶型和烟酰胺腺嘌呤二核苷酸苹果酸酶型两种亚型之间的差异提供了一个新的视角。此外,构建的电子传递速率对CO_2的响应模型为人们研究C_4植物的光合电子流的变化规律提供了一个可供选择的数学工具。
        Aims Accurate estimation of variation tendency of photosynthetic electron flow response to CO_2 is of great significance to understand the photosynthetic processes. Methods A model of electron transport rate(J) response to CO_2(model II) was developed based on a new model of photosynthesis response to CO_2(model I). The data of maize(Zea mays) and grain amaranth(Amaranthus hypochondriacus) that were measured by LI-6400-40 portable photosynthetic apparatus were fitted by the two models, respectively. Important findings The results indicated that the model II could well characterize and fit the CO_2-response curves of electron transport rate(J-Ca curve) for maize and grain amaranth, and the maximum electron transport rates of maize and grain amaranth were 262.41 and 393.07 mmol·m~(-2)·s~(-1), which were in very close agreement with the estimated values(p > 0.05), respectively. Based on these results, the allocation to other pathways of photosynthetic electronic flow were discussed. At 380 mmol·mol-1 CO_2, the photosynthetic electron flows for carbon assimilation of maize and grain amaranth carbon were 247.92 and 285.16 mmol·m~(-2)·s~(-1), respectively, when the CO_2 for recovery of mitochondrial respiration was considered, and the photosynthetic electron flows for other pathways were 14.49 and 107.91 mmol·m~(-2)·s~(-1), respectively. The photosynthetic electron flows for other pathways in grain amaranth were more six times than that in maize. The analysis shows that this difference is closely related to the types of catalytic decarboxylase and the locations of decarboxylation reactions. This finding provides a new perspective for investigating the differences between the two subtypes of nicotinamide adenine dinucleotide phosphate malic acid enzyme type and nicotinamide adenine dinucleotide malic acid enzyme type in C_4 species. In addition, the CO_2-response model of electron transport rate offers us an alternative mathematical tool for inves-tigating the photosynthetic electron flow of C_4 crop.
引文
Baker NR(2008).Chlorophyll fluorescence:A probe of photosynthesis in vivo.Annual Review of Plant Biology,59,89-113.
    Berry JA,Farquhar GD(1978).The CO2 concentrating function of C4 photosynthesis:A biochemical model.In:Hall D,Coombs J,Goodwin T eds.The Proceedings of the Fourth International Congress on Photosynthesis.Biochemical Society of London,London.119-131.
    Collatz GJ,Ribas-Carbo M,Berry JA(1992).Coupled photosynthesis stomatal model for leaves of C4 plants.Australian Journal of Plant Physiology,19,519-538.
    Eichelmann H,Oja V,Peterson RB,Laisk A(2011).The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis.Journal of Experimental Botany,62,2205-2215.
    Epron D,Godard D,Cornic G,Genty B(1995).Limitation of net CO2 assimilation rate by internal resistances to CO2transfer in the leaves of two tree species(Fagus sylvatica L.and Castanea sativa Mill.).Plant,Cell&Environment,18,43-51.
    Farquhar GD,Busch FA(2017).Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect:A model.New Phytologist,214,570-584.
    Feng RY,Bai YF,Li P,Zhang WF,Wang YY,Yang WD(2011).Molecular cloning and expression analysis of C4phosphoenolpyruvate carboxylase gene from A.hypochondriacus L.Acta Agronomica Sinica,37,1801-1808.[冯瑞云,白云凤,李平,张维锋,王媛媛,杨武德(2011).籽粒苋C4型磷酸烯醇式丙酮酸羧化酶基因的克隆和表达.作物学报,37,1801-1808.]
    Fila G,Badeck FW,Meyer S,Cerovic Z,Ghashghaie J(2006).Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants,before and after ex vitro acclimatization.Journal of Experimental Botany,57,2687-2695.
    Foyer CH,Noctor G(2000).Oxygen processing in photosynthesis:Regulation and signaling.New Phytologist,146,359-388.
    Hatch MD(1987).C4 photosynthesis:a unique blend of modified biochemistry,anatomy and ultrastructure.Biochimica et Biophysica Acta,895,81-106.
    He FY,Yan JJ,Bai YF,Feng RY,Zhang WF(2017).Prokaryotic expression and enzyme activity determination of C4key enzyme pyruvate phosphate dikinase gene in Amaranth hypochondriacus.Acta Agriculturae Boreli-Sinica,32,61-65.[贺飞燕,闫建俊,白云凤,冯瑞云,张维锋(2017).籽粒苋C4关键酶丙酮酸磷酸双激酶基因的原核表达及酶活性测定.华北农学报,32,61-65.]
    Heber U(2002).Irrungen,Wirrungen?The Mehler reaction in relation to cyclic electron transport in C3 plants.Photosynthesis Research,73,223-231.
    Kang HJ,Li H,Quan W,Ouyang Z(2014).Causes of decreasing mitochondrial respiration under light in four crops,Chinese Journal of Plant Ecology,38,1110-1116.[康华靖,李红,权伟,欧阳竹(2014).四种作物光下暗呼吸速率降低的原因.植物生态学报,38,1110-1116.]
    Ku MSB,Agarie S,Nomura M,Fukayama H,Tsuchida H,Ono K,Hirose S,Toki S,Miyao M,Matsuoka M(1999).High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants.Nature Biotechnology,17,76-80.
    Li XB,Xu WG,Lei MY,Zhang QC,Wang HW,Li Y,Hua X,Gao C(2017).The response of photosynthetic characteristics of maize C4-type pepc,ppdk and nadp-me transgenetic Arabidopsis thaliana to high light stress.Molecular Plant Breeding,15,911-919.[李小博,许为钢,雷明月,张庆琛,王会伟,李艳,华夏,高崇(2017).转玉米C4光合途径pepc、ppdk、nadp-me基因拟南芥光合特性对强光胁迫的反应.分子植物育种,15,911-919.]
    Liang XY,Liu SR(2017).A review on the FvCB biochemical model of photosynthesis and the measurement of A-Ci curves.Chinese Journal of Plant Ecology,41,693-706.[梁星云,刘世荣(2017).Fv CB生物化学光合模型及A-Ci曲线测定.植物生态学报,41,693-706.]
    Lin ZF,Peng CL,Sun ZJ,Lin GZ(2000).The influence of light intensity on photosynthetic electron transport partitioning in photorespiration for four subtropical forest species.Science China(Ser C),30,72-77.[林植芳,彭长连,孙梓健,林桂珠(2000).光强对4种亚热带森林植物光合电子传递向光呼吸分配的影响.中国科学(C辑),30,72-77.]
    Loreto F,Delfine S,Di-marco G(1999).Estimation of photorespiratory carbon dioxide recycling during photosynthesis.Australian Journal of Plant Physiology,26,733-736.
    Loreto F,Velikova VB,Marco GDA(2001).Respiration in the light measured by 12CO2 emission in 13CO2 atmosphere in maize leaves.Australian Journal of Plant Physiology,28,1103-1108.
    Miyake C(2010).Alternative electron flows(water-water cycle and cyclic electron flow around PSI)in photosynthesis:Molecular mechanisms and physiological functions.Plant and Cell Physiology,51,1951-1963.
    Miyake C,Yonekura K,Kobayashi Y,Yokota A(2002).Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves.Plant and Cell Physiology,43,951-957.
    Peltier G,Tolleter D,Billon E,Cournac L(2010).Auxiliary electron transport pathways in chloroplasts of micro algae.Photosynthesis Research,106,19-31.
    Silva-Pérez V,Furbank RT,Condon AG,Evans J(2017).Biochemical model of C3 photosynthesis applied to wheat at different temperatures.Plant,Cell and Environment,40,1552-1564.
    Tang XL,Cao YH,Gu LH,Zhou BZ(2017a).Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model.Acta Ecologica Sinica,37,6633-6645.[唐星林,曹永慧,顾连宏,周本智(2017a).基于Fv CB模型的叶片光合生理对环境因子的响应研究进展.生态学报,37,6633-6645.]
    Tang XL,Zhou BZ,Zhou Y,Ni X,Cao YH,Gu LH(2017b).Photo-physiological and photo-biochemical characteristics of several herbaceous and woody species based on Fv CBmodel.Chinese Journal of Applied Ecology,28,1482-1488.[唐星林,周本智,周燕,倪霞,曹永慧,顾连宏(2017b).基于Fv CB模型的几种草本和木本植物光合生理生化特性.应用生态学报,28,1482-1488.]
    Taylor L,Nunes-Nesi A,Parsley K,Leiss A,Leach G,Coates S,Wingler A,Fernie AR,Hibberd JM(2010).Cytosolic pyruvate,orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content.Plant Journal,62,641-652.
    Valentini R,Epron D,de Angelis P,Matteucci G,Dreyer E(1995).In situ estimation of net CO2 assimilation,photosynthetic electron flow and photorespiration in Tukey oak(Q.cerris L.)leaves:Diurnal cycles under different levels of water supply.Plant,Cell and Environment,18,631-640.
    von Caemmerer S(2013).Steady-state models of photosynthesis.Plant,Cell and Environment,36,1617-1630.
    von Caemmerer S,Furbank RT(1999).Modeling of C4 photosynthesis.In:Sage RF,Monson R eds.C4 Plant Biology.Academic Press,San Diego,USA.169-207.
    Xue X,Xu HM,Wu HY,Shen YB,Xiao JW,Wan YL(2017).Research progress of cyclic electron transport in plant photosynthesis.Plant Physiology Journal,53,145-158.[薛娴,许会敏,吴鸿洋,沈应柏,肖建伟,万迎朗(2017).植物光合作用循环电子传递的研究进展.植物生理学报,53,145-158.]
    Ye ZP(2010).A review on modeling of responses of photosynthesis to light and CO2.Chinese Journal of Plant Ecology,34,727-740.[叶子飘(2010).光合作用对光和CO2响应模型的研究进展.植物生态学报,34,727-740.]
    Ye ZP,Wang YJ,Wang LL,Kang HJ(2017).Response of photorespiration of Glycine max leaves to light intensity and CO2 concentration.Chinese Journal of Ecology,36,2535-2541.[叶子飘,王怡娟,王令俐,康华靖(2017).大豆叶片光呼吸对光强和CO2浓度的响应.生态学杂志,36,2535-2541.]
    Yin XY,Sun ZP,Struik PC,Gu JF(2011).Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements.Journal of Experimental Botany,62,3489-3499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700