用户名: 密码: 验证码:
碳纤维增强复合材料薄层高效建模方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High efficient modeling techniques of carbon fiber reinforced composite thin layer
  • 作者:孟雪松 ; 张瀚 ; 鲍献丰 ; 李瀚宇 ; 尹文言 ; 周海京
  • 英文作者:MENG Xuesong;ZHANG Han;BAO Xianfeng;LI Hanyu;YIN Wenyan;ZHOU Haijing;CAEP Software Center of High Performance Numerical Simulations;Institute of Applied Physics and Computational Mathematics;Zhejiang University;
  • 关键词:碳纤维增强复合材料薄层 ; 高效建模 ; 均匀化方法 ; 嵌入式薄层模型 ; JEMS-FDTD
  • 英文关键词:carbon fiber reinforced composite thin layer;;high efficient modeling technique;;homogeneous method;;embedded thin layer modeling technique;;JEMS-FDTD
  • 中文刊名:DBKX
  • 英文刊名:Chinese Journal of Radio Science
  • 机构:中物院高性能数值模拟软件中心;北京应用物理与计算数学研究所;浙江大学;
  • 出版日期:2019-01-28 15:39
  • 出版单位:电波科学学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(61771061,61431014,11675022);; 国防基础科研计划(C1520110002)
  • 语种:中文;
  • 页:DBKX201901005
  • 页数:8
  • CN:01
  • ISSN:41-1185/TN
  • 分类号:23-30
摘要
作为金属的替代品,碳纤维增强复合材料已被越来越广泛地用于飞行器、舰船和导弹等目标的壳体制造,而碳纤维增强复合材料的屏蔽效能对目标体的电磁安全起着重要作用.采用常规的全波分析方法计算碳纤维增强复合材料的屏蔽效能存在两大难题:复杂的材料属性和薄层带来的电大多尺度问题.为实现对碳纤维增强复合材料薄层的高效建模,通常采用均匀化的方法来等效具有复杂材料属性的复合材料,采用嵌入式薄层模型技术解决电大多尺度问题.本文将从均匀化方法和嵌入式薄层模型技术两个方面来探讨碳纤维增强复合材料薄层高效建模方法,并概述自主研发的大规模并行全波分析软件JEMS-FDTD及其集成的嵌入式薄层模型技术.最后,通过计算实例说明集成了嵌入式薄层模型的JEMS-FDTD软件在对碳纤维增强复合材料进行建模的正确性和高效性,并通过模拟仿真壳体为碳纤维增强复合材料飞机的屏蔽效能,说明集成了嵌入式薄层模型的JEMS-FDTD软件的实际应用价值.
        Carbon fibre reinforced composite(CFRC) materials have been widely adopted as replacement of metals for the construction of enclosures of platform targets, such as aircraft, ships, missiles, and so on. The shielding properties of CFRC materials play an important role in the electromagnetic safety of platform targets. There have been two difficulties in the calculation of shielding effectiveness of CFRC thin layer using the conventional full wave numerical methods: the complicated material properties of CFRC materials and the electrically large multi-scale problem due to the small thickness of CFRC thin layer. To overcome these two difficulties, homogeneous methods have been developed to obtain the equivalent homogeneous materials to the composite materials with complicated material properties and the embedded thin layer model techniques have been proposed to solve the electrically large multi-scale problems. In this paper, the high efficiently modelling techniques of CFRC thin layers will be discussed, from the perspective
引文
[1] MRAZOVA M. Advanced composite materials of the future in aerospace industry[J]. INCAS bulletin, 2013, 5(3): 139-150.
    [2] JIA Y, LI K, XUE L, et al. Mechanical and electromagnetic shielding performance of carbon fiber reinforced multilayered (PyC-SiC)n matrix composites [J]. Carbon, 2017, 111: 299-308.
    [3] TAFLOVE A, HAGNESS S. Computational electrodynamics: the finite-difference time-domain method [M]. 3rd ed. Boston: Artech House, 2005.
    [4] CHRISTOPOULOS C. The transmission-line modeling method TLM [M]. IEEE Press, 1995.
    [5] SEWELL P, WYKES J G, BENSON T M, et al. Transmission line modelling using unstructured meshes [C]//IEE proceedings—science, measurement and technology, 2004, 151(6): 445-448.
    [6] SEWELL P, BENSON T M, CHRISTOPOULOS C, et al. Transmission line modeling (TLM) based upon unstructured tetrahedral meshes [J]. IEEE transactions on microwave theory and techniques, 2005, 53(6): 1919-1928.
    [7] WAKI H, IGARASHI H, HONMA T. Estimation of effective permeability of magnetic composite materials [J]. IEEE transactions on magnetics, 41(5): 1520-1523.
    [8] PRéAULT V, CORCOLLE R, DANIEL L, et al. Effective permittivity of shielding composite materials for microwave frequencies [J]. IEEE transactions on electromagnetic compatibility, 2013, 55(6): 1178-1186.
    [9] LIAO Y, ZHANG Y, WANG Y. Effects of inclusion concentration on effective permittivity of shielding composites [C]//Proceeding of 2015 IEEE 4th Asia-Pacific Conference on Antennas Propagation, APCAP 2015, 2016: 490-492.
    [10] HOLLOWAY C L, SARTO M S, JOHANSSON M. Analyzing carbon-fiber composite materials with equivalent-layer models [J]. IEEE transactions on electromagnetic compatibility, 2005, 47(4): 833-844.
    [11] LIU L, MATITSINE S M, GAN Y B, et al. Effective permittivity of planar composites with randomly or periodically distributed conducting fibers[J]. Journal of apply physics, 2005, 98(6): 063512.
    [12] MENG X. Modelling multi-scale problems in the transmission line modelling method [D]. Nottingham: University of Nottingham, 2014.
    [13] WANG J, ZHOU B, SHI L, et al. Analyzing the electromagnetic performances of composite materials with the FDTD method[J]. IEEE transactions on antennas and propagation, 2013, 61(5): 2646-2654.
    [14] DAWSON J, AUSTIN A, FLINTOFT I, et al. Shielding effectiveness and sheet conductance of nonwoven carbon-fiber sheets [J]. IEEE transactions on electromagnetic compatibility, 2017, 59(1): 84-92.
    [15] LEONTOVICH M A. On the approximate boundary conditions for electromagnetic fields on the surface of well conducting bodies [R]. Investigations of Propagation of Radio Waves, Academy of Sciences USSR, 1948: 5-20.
    [16] MALONEY J G, SMITH G S. Implementation of surface impedance concepts in the finite-difference time-domain (FD-TD) technique [C]//International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's, 1990: 1628-1631.
    [17] MALONEY J G, SMITH G S. The use of surface impedance concepts in the finite-difference time-domain method[J]. IEEE transactions on antennas and propagation, 1992, 40(1): 38-48.
    [18] KOBIDZE G. Implementation of collocated surface impedance boundary conditions in FDTD [J]. IEEE transactions on antennas propagation, 2010, 58(7): 2394-2403.
    [19] SHI L, YANG L, MA H, et al. Collocated SIBC-FDTD method for coated conductors at oblique incidence [J]. Progress in electromagnetics research M, 2013, 30: 239-252.
    [20] FELIZIANI M, MARADEI F, TRIBELLINI G. Field analysis of penetrable conductive shields by the finite-difference time-domain method with impedance network boundary conditions (INBC's) [J]. IEEE transactions on electromagnetic compatibility, 1999, 41(4): 307-319.
    [21] FELIZIANI M, MARADEI F. Finite-difference time-domain modeling of thin shields [J]. IEEE transactions on magnetics, 2000, 36(4): 848-851.
    [22] FELIZIANI M. Subcell FDTD modeling of field penetration through lossy shields [J]. IEEE transactions on electromagnetic compatibility, 2012, 54(2): 299-307.
    [23] NAYYERI V, SOLEIMANI M, RAMAHI O M. A method to model thin conductive layers in the finite-difference time-domain method [J]. IEEE transactions on electromagnetic compatibility, 2013, 56(2): 385-392.
    [24] SI Q, HUANG Z, SHI L, et al. A modified INBC for FDTD analyzing of shielding cavity with thin conductive layers under plane wave incidence[J]. IEICE electronics express, 2016, 13(5): 1-11.
    [25] SARTO M S. A new model for the FDTD analysis of the shielding performances of thin composite structures [J]. IEEE transactions on electromagnetic compatibility, 1999, 41(4): 298-306.
    [26] APRà M, D'AMORE M, GIGLIOTTI K, et al. Lightning indirect effects certification of a transport aircraft by numerical simulation [J]. IEEE transactions on electromagnetic compatibility, 2008, 50(3): 513-523.
    [27] MENG X, SEWELL P, VUKOVIC A, et al. Efficient broadband simulations for thin optical structures [J]. Optical & quantum electronics, 2013, 45: 343-348.
    [28] MENG X, SEWELL P, PHANG S, et al. Modeling curved carbon fiber composite (CFC) structures in the transmission-line modeling (TLM) method [J]. IEEE transactions on electromagnetic compatibility, 2015, 57(3): 384-390.
    [29] MENG X, SEWELL P, VUKOVIC A, et al. Extended capability models for carbon fiber composite (CFC) panels in the unstructured transmission line modelling (UTLM) method [J]. IEEE transactions on electromagnetic compatibility, 2016, 58(3): 811-819.
    [30] 孟雪松, 鲍献丰, 刘德赟, 等. 嵌入式薄片模型在时域有限差分算法中的应用[J]. 强激光与粒子束, 2017, 29(12): 43-47. MENG X S, BAO X F, LIU D Y, et al. Embedded thin film model in finite difference time domain method[J]. High power laser and particle beams, 2017, 29(12): 43-47.(in Chinese)
    [31] CABELLO M R, ANGULO L D, ALVAREZ J, et al. A hybrid Crank-Nicolson FDTD subgridding boundary condition for lossy thin-layer modeling [J]. IEEE transactions on microwave theory and techniques, 2017, 65(5): 1397-1406.
    [32] CABELLO M R, FERNANDEZ S, POUS M, et al. SIVA UAV: a case study for the EMC analysis of composite air vehicles [J]. IEEE transactions on electromagnetic compatibility, 2017, 59(4): 1103-1113.
    [33] ANGULO L D, CABELLO M R, ALVAREZ J, et al. From microscopic to macroscopic description of composite thin panels: a road map for their simulation in time domain [J]. IEEE transactions on microwave theory and techniques, 2018, 66(2): 660-668.
    [34] LI H Y, ZHOU H J, LIU Y, et al. Massively parallel FDTD program JEMS-FDTD and its applications in platform coupling simulation[C]//International Symposium on Electromagnetic Compatibility. IEEE, 2014: 229-233.
    [35] 鲍献丰, 李瀚宇, 周海京. JEMS-FDTD软件在运输机电磁特性仿真中的应用[J]. 强激光与粒子束, 2015, 27(10): 27103217. BAO X F, LI H Y, ZHOU H J. Application of JEMS-FDTD to electromagnetic characteristics simulation of transport plane[J]. High power laser and particle beams, 2015, 27(10): 27103217.(in Chinese)
    [36] 鲍献丰, 李瀚宇, 伍月千, 等. JEMS-FDTD软件在飞机HIRF仿真中的应用[J]. 强激光与粒子束, 2017, 29(10): 29103204. BAO X F, LI H Y, WU Y Q, et al. Application of JEMS-FDTD in high intensity radiation field simulation on aircraft[J]. High power laser and particle beams, 2017, 29(10): 29103204.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700