基于Callaway模型InGaN材料导热系数的理论研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical Study of InGaN Thermal Conductivity Based on Callaway Model
  • 作者:王保柱 ; 宋江 ; 孟帆帆 ; 王敏 ; 范振凯
  • 英文作者:WANG Bao-zhu;SONG Jiang;MENG Fan-fan;WANG Min;FAN Zhen-kai;School of Information Science and Engineering,Hebei University of Science and Technology;
  • 关键词:Callaway模型 ; InGaN ; 导热系数
  • 英文关键词:Callaway model;;InGaN;;thermal conductivity
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:河北科技大学信息科学与工程学院;
  • 出版日期:2018-05-15
  • 出版单位:人工晶体学报
  • 年:2018
  • 期:v.47;No.235
  • 基金:河北省自然科学基金(F2017208031);; 河北省高等学校科学研究重点项目(ZD2016042)
  • 语种:中文;
  • 页:RGJT201805008
  • 页数:6
  • CN:05
  • ISSN:11-2637/O7
  • 分类号:50-54+62
摘要
由于InGaN材料的禁带宽度调节范围大,热稳定性好,化学性质稳定,因此在微电子、光电子和热电领域的高温区有良好的应用前景。基于Callaway导热系数模型从理论上计算了体材料和薄膜材料InGaN的导热系数,分析了温度、In组分和边界尺寸对InGaN导热系数的影响。研究结果表明,温度大于100 K时,不同组分的InGaN材料导热系数随温度的上升而下降,300 K时,体材料In_(0.1)Ga_(0.9)N的热导系数为90.15 W·m~(-1)·K~(-1),比相同温度下Ga N的导热系数小一半,200 nm的In_(0.1)Ga_(0.9)N热导系数为30.68 W·m~(-1)·K~(-1)。InGaN合金的热导系数随着In组分先变小再变大,理论计算结果表明In_(0.6)Ga_(0.4)N的导热系数最小,300 K时,体材料的导热系数为14.52 W·m~(-1)·K~(-1),200 nm的薄膜材料导热系数为4.02 W·m~(-1)·K~(-1),理论计算结果与文献报道的实验结果是合理一致的。
        InGaN materials have widely applications including microelectronics,optoelectronics and high temperature thermoelectric fields due to the wide range adjustable band gap,good thermal and chemical stability. The thermal conductivities of bulk and film InGaN are calculated based Callaway model. The effects of temperature,Indium composition and boundary dimensions to the InGaN thermal conductivities are studied. The theoretical calculation results indicate thermal conductivities of different Indium composition InGaN decrease with the increase of the temperature. The thermal conductivity of bulk In In_(0.1)Ga_(0.9)N is 90. 15 W·m~(-1)·K~(-1) at 300 K,which is just half compare with the thermal conductivity of Ga N. The thermal conductivity of 200 nm thick InIn_(0.1)Ga_(0.9)N is 30. 68 W · m~(-1)·K~(-1). The thermal conductivities of InGaN alloy decrease firstly and then increase increase with the increase of Indium composition. The calculation results show thermal conductivity the In_(0.6)Ga_(0.4)N is the smallest at 300 K.The thermal conductivities of bulk and 200 nm thick In_(0.6)Ga_(0.4)N are 14. 52 W·m~(-1)·K~(-1) and 4. 02 W·m~(-1)· K~(-1) respectively. The results of the theoretical calculation are in good agreement with the experimental results reported in the literature.
引文
[1]Waltereit P,Brandt O,Trampert A,et al.Nitride Semiconductors Free of Electrostatic Fields for Efficient White Light-emitting Diodes[J].Nature,2000,406(6798):865-868.
    [2]Nanjo T,Imai A,Suzuki Y,et al.Al G a N channel HEMT with Extremely High Breakdown Voltage[J].IEEE Transactions on Electron Devices,2013,60(3):1046-1053
    [3]Wang B Z,Wang X L,Wang X Y,et al.The growth of high-Al-content In Al Ga N quaternary alloys by RF-MBE[J],J.Phys.D-Appl.Phys.,2007,40(3):765-768
    [4]Nakamura S,Mukai T,Senoh M,et al.Candela-class High-hrightness In Ca N/Al Ca N Double-heterostructure Blue-light-mitting Diodes[J],Appl.Phys.Lett.,1994,64(13):1687-1689.
    [5]张正宜,梁将,武维.激发功率密度和阱层厚度对极化In Ga N/Ga N多量子阱光致发光性能的影响[J].人工晶体学报,2017,46(2):386-392.
    [6]Lu N,Ferguson I.III-nitrides for energy production:photovoltaic and thermoelectric applications[J],J.Semi.Sci.&Tech.,2013,28(7):074023-1-07402 3-11
    [7]王保柱,张秀清,张奥迪,等.金属有机物化学气相沉积生长Ga N薄膜的室温热电特性研究[J].物理学报,2015,64(4):047202-1-047202-5
    [8]Sichel E K,Pankove J I.Thermal conductivity of Ga N,25-360 K[J].Journal of Physics and Chemistry of Solids,1977,38(3):330-330.
    [9]Asnin V M,Pollak F H,Ramer J,et al.High spatial resolution thermal conductivity of lateral epitaxial overgrown Ga N/sapphire(0001)using ascanningthermalmicroscope[J].Applied.Physics.Letters.,1999,75(9):1240-1243.
    [10]Slack G A,Schowalter L J,Morelli D,et al.Some effects of oxygen impurities on A1N and Ga N[J].Journal of Crystal Growth,2002,246(3-4):287-298
    [11]Mion C,Muth J F,Preble E A,et al.Accurate dependence of gallium nitride thermal conductivity on dislocation density[J].Applied Physics Letters,2006,89{9):092123.
    [12]Pantha B N,Dahal R,Li J,et al.Thermoelectric properties of In Ga N alloys[J].Applied Physics Letters,2008,92(4):042112-1-042112-3.
    [13]Sztein A,Ohta H,Bowers J E,et al.High temperature thermoelectric properties of optimized In Ga N[J].Journal of Applied Physics,2011,110(12):123709.
    [14]Sztein A,Bowers J E,Den Baars S P,et al.Thermoelectric properties of lattice matched 1n Al N on semi-insulating Ga N templates[J].Journal of Applied Physics,2012,112(8):083716.
    [15]Morelli D T,Heremans J P,Slack G A.Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors[J].Physical Review B,2002,66(19):195304.
    [16]Zou J,Kotchetkov D,Balandin A A,et al.Thermal conductivity of Ga N films:Effects of impurities and dislocations[J].Journal of Applied Physics,2002,92(5):2534-2539.
    [17]Al Shaikhi A,Barman S,Srivastava G P.Theory of the lattice thermal conductivity in bulk and films of Ga N[J].Physical Review B,2010,81(19):195320.
    [18]Liu W,Balandin A A.Thermal conduction in AlxGa1-xN alloys and thin films[J].Journal of Applied Physics,2005,97(7):073710-073710-6.
    [19]Sahoo B K.Effect of macroscopic polarization on thermal conductivity of In N[J].Journal of Alloys&Compounds,2014,605(9):217-221.
    [20]Kamatagi M D,Sankeshwar N S,Mulimani B G.Thermal conductivity of Ga N[J].Diamond&Related Materials,2007,16(16):98-106.
    [21]Tong T,Fu D,Levander A X,et al.Suppression of thermal conductivity in InxGa1-xN alloys by nanometer-scale disorder[J].Applied.Physics.Letters.,2013,102(12):121906-121906-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700