液相脉冲激光辅助制备单壁碳纳米角的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of single-wall carbon nanohorns assisted by liquid medium and pulsed laser
  • 作者:王冕 ; 马服辉 ; 王日红 ; 钱磊 ; 马文迅 ; 任旭东
  • 英文作者:WANG Mian;MA Fuhui;WANG Rihong;QIAN Lei;MA Wenxun;REN Xudong;School of Mechanical Engineering, Jiangsu University;
  • 关键词:激光技术 ; 单壁碳纳米角 ; 激光能量 ; 粒径分布
  • 英文关键词:laser technique;;single-wall carbon nanohorn;;laser energy;;particle size distribution
  • 中文刊名:JGJS
  • 英文刊名:Laser Technology
  • 机构:江苏大学机械工程学院;
  • 出版日期:2018-05-14 13:57
  • 出版单位:激光技术
  • 年:2019
  • 期:v.43;No.240
  • 基金:国家自然科学基金资助项目(51479082);; 江苏省自然科学基金资助项目(BK20160014);; 江苏省333资助项目(BRA2017389)
  • 语种:中文;
  • 页:JGJS201902006
  • 页数:5
  • CN:02
  • ISSN:51-1125/TN
  • 分类号:37-41
摘要
为了探索出一种可控、稳定、高效的制备碳纳米角的方法,采用高功率、短脉冲Nd∶YAG激光器对悬浮于液相介质中的天然鳞片石墨颗粒进行激光辐照,并通过高分辨率透射电镜、激光喇曼光谱等检测手段对实验产物进行表征,对实验结果进行了理论分析与实验验证。结果表明,激光能量为150mJ,300mJ,450mJ和600mJ时,对应的产物分别为seed型、bud型、dahlia型和petal-dahlia型碳纳米角;4种形态的碳纳米角的粒径均分布于10nm~80nm范围内,平均粒径分别为29nm,33nm,36nm和38nm。该研究对制备出不同形态的碳纳米角是有帮助的。
        In order to explore a controllable, stable and efficient method for preparing carbon nanohorns, Nd∶YAG laser with high power and short pulse was used to irradiate natural flake graphite particles suspended in liquid medium. The experimental products were characterized by high resolution transmission electron microscopy and laser Raman spectroscopy. The experimental results were analyzed theoretically and experimentally. The results show that, when laser energy is 150 mJ, 300 mJ, 450 mJ and 600 mJ, the corresponding products are carbon nanohorns of seed type, bud type, dahlia type and petal-dahlia type respectively. The particle sizes of the four kinds of carbon nanohorns are all distributed in the range of 10 nm to 80 nm with average sizes of 29 nm, 33 nm, 36 nm and 38 nm, respectively. This study is helpful to prepare different forms of carbon nanohorn materials.
引文
[1] IIJIMA S, YUDASAKA M, YAMADA R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns[J]. Chemical Physics Letters, 1999, 309(3/4):165-170.
    [2] BANDOW S, KOKAI F, TAKAHASHI K, et al. Interlayer spacing anomaly of single wall carbon nanohorn aggregates[J]. Chemical Physics Letters, 2000, 321(5/6):514-519.
    [3] FAN J, YUDASAKA M, KASUYA Y, et al. Influence of water on desorption rates of benzene adsorbed within single-wall carbon nanohorns[J]. Chemical Physics Letters, 2004, 397(1):5-10.
    [4] ZHU S, NIU W, LI H, et al. Single-walled carbon nanohorn as new solid-phase extraction adsorbent for determination of 4-nitrophenol in water sample[J]. Talanta, 2009, 79(5):1441-1445.
    [5] ZHU S, LI H, NIU W, et al. Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode[J]. Biosensors & Bioelectronics, 2009, 25(4):940-943.
    [6] LIU X, SHI L, NIU W, et al. Amperometric glucose biosensor based on single-walled carbon nanohorns[J]. Biosensors & Bioelectronics, 2008, 23(12):1887-1890.
    [7] LIU X, LI H, WANG F, et al. Functionalized single-walled carbon nanohorns for electrochemical biosensing[J]. Biosensors & Bioelectronics, 2010, 25(10):2194-2199.
    [8] MOGHIMI S M, HUNTER A C, MURRAY J C. Long-circulating and target-specific nanoparticles: Theory to practice[J]. Pharmacological Reviews, 2001, 53(2):283-318.
    [9] XU J, YUDASAKA M, KOURABA S, et al. Single wall carbon nanohorn as a drug carrier for controlled release[J]. Chemical Physics Letters, 2008, 461(4/6):189-192.
    [10] LI N, WANG Z, ZHAO K, et al. Synthesis of single-wall carbon nanohorns by acr-discharge in air and their formation mechanism [J]. Carbon, 2010, 48(5):1580-1585.
    [11] KASUYA D, YUDASAKA M, TAKAHASHI K, et al. Selective production of single-wall carbon nanohorn aggregates and their formation mechanism [J]. Journal of Physical Chemistry, 2002, B106(19):4947-4951.
    [12] SANO N. Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection [J]. Journal of Physics, 2004, D37(8):L17.
    [13] YAMAGUCHI T, BANDOW S, IIJIMA S. Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods [J]. Chemical Physics Letters, 2004, 389(1/3):181-185.
    [14] MIRABILE GATTIA D, VITTORI ANTISARI M, MARAZZI R. AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets [J]. Nanotechnology, 2007, 18(25):255604.
    [15] YANG T, ZHOU W F, YANG J D, et al. Effect of laser shot peening on high temperature property of Ti-6Al-4V titanium alloy[J]. Laser Technology, 2017, 41(4):526-530 (in Chinese).
    [16] YANG J D, ZHOU W F, YANG T, et al. Nanocrystallization of Ti-6Al-4V alloy by multiple laser shock processing[J]. Laser Technology, 2017, 41(5):754-758 (in Chinese).
    [17] QIAN X Zh, WANG Q Q, REN N F. Optimization of laser drilling processing parameters for SUS304 based on orthogonal experiments[J]. Laser Technology, 2017, 41(4):578-581 (in Chinese).
    [18] ZHEN L M, Lü Y W, TANG Sh X, et al. Phase growth mechanism of ultra-fine nano-diamond prepared by nanosecond laser[J]. Laser Technology, 2016, 40(1):25-28 (in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700