基于最小能耗的电动汽车横摆稳定性灰色预测可拓控制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Grey Predictive Extension Control of Yaw Stability of ElectricVehicle Based on the Minimum Energy Consumption
  • 作者:陈无畏 ; 王晓 ; 谈东奎 ; 林澍 ; 孙晓文 ; 谢有浩
  • 英文作者:CHEN Wuwei;WANG Xiao;TAN Dongkui;LIN Shu;SUN Xiaowen;XIE Youhao;School of Automotive and Transportation Engineering, Hefei University of Technology;Anhui Leopaard Co., Ltd.;
  • 关键词:轮毂电机 ; 直接横摆力矩控制 ; 灰色预测 ; 可拓控制 ; 伪逆算法 ; 最小能耗
  • 英文关键词:wheel hub motor;;direct yaw moment control;;gray prediction;;extension control;;pseudo inverse algorithm;;minimumenergy consumption
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:合肥工业大学汽车与交通工程学院;安徽猎豹汽车有限公司;
  • 出版日期:2018-08-18 17:20
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金(51675151,U1564201,51375131);; 安徽省科技重大专项(17030901060);; 江苏省道路载运工具新技术应用重点实验室开放课题(BM20082061703)资助项目
  • 语种:中文;
  • 页:JXXB201902018
  • 页数:12
  • CN:02
  • ISSN:11-2187/TH
  • 分类号:170-181
摘要
根据四轮驱动轮毂电机电动汽车车轮驱动转矩独立可控的特点,通过控制轮毂电机的输出转矩从而控制四个车轮的驱动力/制动力,产生附加横摆力矩,实现电动汽车的横摆稳定性控制。整车控制策略采用分层控制,上层为附加横摆力矩控制器,分别设计基于横摆角速度的模糊控制器、基于质心侧偏角的模糊控制器和可拓联合控制器,下层为驱动力分配控制器,分为稳定性控制模式、最小能耗控制模式和联合控制模式,采用伪逆优化算法对各车轮的驱动力矩进行优化分配。采用灰色控制模型对实际的横摆角速度和质心侧偏角数据进行预处理。根据电动汽车行驶状态,将控制域划分为经典域、可拓域和非域,在不同的域内采用不同的控制模式,在保证整车横摆稳定性的同时降低整车驱动能耗,提高续航里程。在Matlab/Simulink软件中建立整车动力学模型,并在双移线工况下进行横摆稳定性控制与最小能耗控制的仿真分析。仿真结果表明,整车控制策略能有效保障汽车行驶时的横摆稳定性,同时可以降低整车的驱动能耗。最后,利用轮毂电机试验台并采用Carsim和LabVIEW进行硬件在环试验,验证整车控制策略。
        According to the characteristics that the driving torque of each wheel of a four-wheel hub motor drive electric vehicle can beindependently controlled, the stability control of the electric vehicle could be realized by controlling the output torque of wheel hub motor(i.e., adjusting the wheel driving force or brake force) to generate additional yaw moment. The hierarchical control strategy is applied forthe vehicle stability control. The upper layer is a yaw moment controller, which includes two fuzzy controllers based on yaw rate andsideslip angle, respectively, and an extension combination controller. The lower layer is a driving force distribution controller, whichutilizes the pseudo inverse algorithm to optimize the driving torque allocation of each wheel. Its control modes are divided into stabilitycontrol, minimum energy consumption control and combination control. The gray control model is used to preprocess the actual yaw rateand sideslip angle. According to the electric vehicle driving state, the control domain is divided into three domains, i.e., classic domain,extension domain and non-domain. And in different domains, different control modes are employed to ensure the vehicle's stability andreduce the energy consumption. The vehicle dynamics model is established in Matlab/Simulink. The simulations of stability control andminimum energy consumption control have been carried out in double lane change condition. The simulation results show that theproposed control strategy can effectively guarantee the vehicle's stability and minimize the energy consumption. Finally, the controlstrategy was verified on a wheel hub motor test bench based on Carsim and LabVIEW.
引文
[1]白洪涛.基于四轮轮毂电机的纯电动汽车驱动策略研究[D].长春:吉林大学,2015.BAI Hongtao.Drive control strategy study based on 4in-wheel-motor drive pure electric vehicle[D].Changchun:Jilin University,2015.
    [2]LI B,LI W,KENNEDY O,et al.Dynamics analysis of an omni-directional vehicle[J].International Journal of Automotive Technology,2014,15(3):387-398.
    [3]ZHANG L X,WU G Q.Combination of front steering and differential braking control for the path tracking of autonomous vehicle[C]//SAE 2016 World Congress and Exhibition.SAE,2016-01-1627,2016.
    [4]KO S Y,KO J W,LEE S M,et al.A study on in-wheel motor control to improve vehicle stability using human-in-the-loop simulation[J].Journal of Power Electronics,2013,13(4):536-545.
    [5]REN B,CHEN H,ZHAO H,et al.MPC-based yaw stability control in in-wheel-motored EV via active front steering and motor torque distribution[J].Mechatronics,2015(38):103-114.
    [6]谷成,刘浩,陈辛波.基于效率优化的四轮独立驱动电动车转矩分配[J].同济大学学报,2015,43(10):1550-1556.GU Cheng,LIU Hao,CHEN Xinbo.Torque distribution based on efficiency optimization of four-wheel independent drive electric vehicle[J].Journal of Tongji University,2015,43(10):1150-1156.
    [7]余卓平,张立军,熊璐.四驱电动车经济性改善的最优转矩分配控制[J].同济大学学报,2005,33(10):1355-1361.YU Zhuoping,ZHANG Lijun,XIONG Lu.Optimized torque distribution control to achieve higher fuel economy of 4WD electric vehicle with four in-wheel motors[J].Journal of Tongji University,2005,33(10):1355-1361.
    [8]CHEN Y H,HEDRICK J K,GUO K H.A novel direct yaw moment controller for in-wheel motor electric vehicles[J].Vehicle System Dynamics,2013,51(6):924-942.
    [9]LI L,LU Y,WANG R,et al.A three-dimensional dynamics control framework of vehicle lateral stability and rollover prevention via active braking with MPC[J].IEEE Transactions on Industrial Electronics,2015,64(4):3389-3401.
    [10]张晓迪.船舶推力分配多步优化算法研究[D].上海:上海交通大学,2015.ZHANG Xiaodi.Research on multi-step thrust allocation optimization algorithm of vessels[D].Shanghai:Shanghai Jiao Tong University,2015.
    [11]孙桂华.基于直接横摆力矩控制的电动汽车操纵稳定性研究[D].镇江:江苏大学,2013.SUN Guihua.Research on handling and stability of electric vehicle based on direct yaw-moment control[D].Zhenjiang:Jiansu University,2013.
    [12]贺劲松.分布式驱动电动汽车直驶工况驱动策略研究[D].北京:北京理工大学,2015.HE Jinsong.Study on the control strategy of straight-ahead driving condition of distributed drive electric vehicle[D].Beijing:Beijing Institute of Technology,2015.
    [13]王军年.电动轮独立驱动汽车差动助力转向技术研究[D].长春:吉林大学,2009.WANG Junnian.Study on differential drive assist steering technology for electric vehicle with independentmotorized-wheel-drive[D].Changchun:Jilin University,2009.
    [14]张荣芸,黄鹤,陈无畏,等.基于功能分配与多目标模糊决策的EPS和ESP协调控制[J].机械工程学报,2014,50(6):99-106.ZHANG Rongyun,HUANG He,CHEN Wuwei,et al.Coordinated control of EPS and ESP based on function allocation and multi-objective fuzzy decision[J].Journal of Mechanical Engineering,2014,50(6):99-106.
    [15]刘红军,韩璞,王东风,等.灰色预测模糊PID控制在汽温控制系统中的应用[J].系统仿真学报,2004,16(8):1839-1841.LIU Hongjun,HAN Pu,WANG Dongfeng,et al.Fuzzy PID control with grey prediction and its application in temperature control system[J].Journal of System Simulation,2004,16(8):1839-1841.
    [16]肖聚亮,王国栋,阎祥安,等.变步长灰色预测模糊控制研究与应用[J].天津大学学报,2007,40(7):859-863.XIAO Juliang,WANG Guodong,YAN Xiang’an,et al.Switching grey prediction fuzzy control and its application[J].Journal of Tianjin University,2007,40(7):859-863.
    [17]王明东,刘宪林,于继来.基于灰色预测技术和可拓控制方法的电力系统稳定器[J].电力自动化设备,2014,34(4):8-12.WANG Mingdong,LIU Xianlin,YU Jilai.Power system stabilizer based on grey prediction and extension control[J].Electric Power Automation Equipment,2014,34(4):8-12.
    [18]钱丹剑.分布式驱动电动汽车横摆力矩控制与转矩分配研究[D].长春:吉林大学,2015.QIAN Danjian.Study on yaw moment control and torque distribution for distributed drive electric vehicles[D].Changchun:Jilin University,2015.
    [19]赵伟.汽车动力学稳定性横摆力矩和主动转向联合控制策略的仿真研究[D].西安:长安大学,2008.ZHAO Wei.Simulation research on combined control strategy of yaw moment and active steering for vehicle dynamic stability[D].Xi’an:Chang’an University,2008.
    [20]陈无畏,孙晓文,汪洪波.汽车差动助力转向系统的可拓协调控制[J].中国科学:技术科学,2017,47(3):324-355.CHEN Wuwei,SUN Xiaowen,WANG Hongbo.Extension coordinated control of automotive differential drive assisted steering system[J].Scientia Sinica Technologica,2017,47(3):324-355.
    [21]刘翔宇.基于直接横摆力矩控制的车辆稳定性研究[D].合肥:合肥工业大学,2010.LIU Xiangyu.Study of vehicle stability base on direct yaw moment control[D].Hefei:Hefei University of Technology,2010.
    [22]杨春燕,蔡文.可拓学[M].北京:科学出版社,2014.YANG Chunyan,CAI Wen.Extenics[M].Beijing:Science Press,2014.
    [23]KOBAYASHI T,KATSUYAMA E,SUGIURA H,et al.Efficient direct yaw moment control during acceleration and deceleration while turning(first report)[R].SAE,2016-01-1674,2016.
    [24]李刚.线控四轮独立驱动轮毂电机电动汽车稳定性与节能控制研究[D].长春:吉林大学,2013.LI Gang.Study on stability and energy saving control for X-by-wire electric vehicle with four-wheel independent drive in-wheel motors[D].Changchun:Jilin University,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700