PSD-95与老化相关学习记忆能力下降关系研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The recent researches in the relationship between PSD-95 and age related impairments in learning and memory
  • 作者:林江涛 ; 丁悦敏 ; 张雄
  • 英文作者:LIN Jiang-tao;DING Yue-min;ZHANG Xiong;Department of Basic Medicine, College of Medicine, Zhejiang University;Department of Clinical Medicine, School of Medicine, Zhejiang University City College;
  • 关键词:脑老化 ; 学习记忆 ; 突触 ; 突触后致密蛋白95
  • 英文关键词:brain aging;;learning and memory;;synapse;;postsynaptic density protein 95
  • 中文刊名:SWXZ
  • 英文刊名:Journal of Biology
  • 机构:浙江大学医学院基础医学系;浙江大学城市学院医学院临床医学系;
  • 出版日期:2018-06-08 15:18
  • 出版单位:生物学杂志
  • 年:2019
  • 期:v.36;No.208
  • 基金:浙江省自然科学基金(LY15H250001)
  • 语种:中文;
  • 页:SWXZ201902019
  • 页数:4
  • CN:02
  • ISSN:34-1081/Q
  • 分类号:87-89+93
摘要
学习记忆能力下降是老年人群脑老化的主要特征之一,这部分归因于突触结构和功能的改变而非神经元的死亡。突触后致密蛋白95(PSD-95)是突触后结构中的一种支架蛋白,其表达对于维持突触结构及突触可塑性十分重要。最近的研究发现PSD-95与脑老化密切相关,对PSD-95与脑老化的关系作一综述,重点关注PSD-95与脑老化相关学习记忆能力下降的关系,以期为脑老化机制的深入研究及相关疾病的防治提供参考。
        Brain aging is associated with impairments in learning and memory, which can be explained partly by alterations in synaptic structure and function rather than neuronal loss. Postsynaptic density protein 95(PSD-95) is a major scaffolding protein in postsynaptic density and is important for maintaining the synaptic structure and plasticity. PSD-95 is considered to be associated with brain aging in recent studies. Thus, we reviewed the relationship of PSD-95 and brain aging, mainly focusing on impairments in learning and memory, hoping to provide a new sight for further researches in the mechanisms of brain aging and in preventing the related diseases.
引文
[1]BURKE S N, BARNES C A. Neural plasticity in the ageing brain[J]. Nature Reviews Neuroscience, 2006, 7: 30-40.
    [2]ZHENG C Y, SEABOLD G K, HORAK M, et al. MAGUKs, synaptic development, and synaptic plasticity[J]. Neuroscientist, 2011, 17: 493-512.
    [3]MORRISON J H, BAXTER M G. The ageing cortical synapse: hallmarks and implications for cognitive decline[J]. Nature Reviews Neuroscience, 2012, 13: 240-250.
    [4]GRILLO F W. Long live the axon. Parallels between ageing and pathology from a presynaptic point of view[J]. Joumal of Chemical Neuroanatomy, 2016, 76: 28-34.
    [5]PETERS A, SETHARES C, LUEBKE J I. Synapses are lost during aging in the primate prefrontal cortex[J]. Neuroscience, 2008, 152: 970-981.
    [6]HONGPAISAN J, XU C, SEN A, et al. PKC activation during training restores mushroom spine synapses and memory in the aged rat[J]. Neurobiology of Disease, 2013, 55: 44-62.
    [7]LYNCH M A. Long-term potentiation and memory[J]. Physiology Reviews, 2004, 84: 87-136.
    [8]STATHAKIS D G, UDAR N, SANDGREN O, et al. Genomic organization of human DLG4, the gene encoding postsynaptic density 95[J]. Journal of Neurochemistry,1999, 73: 2250-2265.
    [9]SHENG M, KIM E. The postsynaptic organization of synapses[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3.
    [10]VALLEJO D, CODOCEDO J F, INESTROSA N C. Posttranslational modifications regulate the postsynaptic localization of PSD-95[J]. Molecular Neurobiology, 2017, 54: 1759-1776.
    [11]LAMBERT J T, HILL T C, PARK D K, et al. Protracted and asynchronous accumulation of PSD95-family MAGUKs during maturation of nascent dendritic spines[J]. Developmental Neurobiology, 2017, 77: 1161-1174.
    [12]BAO J, LIN H, OUYANG Y, et al. Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos[J]. Nature Neuroscience, 2004, 7: 1250-1258.
    [13]CHEN X, WINTERS C, AZZAM R, et al. Organization of the core structure of the postsynaptic density[J]. PNAS, 2008, 105: 4453-4458.
    [14]HAN K, KIM E. Synaptic adhesion molecules and PSD-95[J]. Progress in Neurobiology, 2008, 84: 263-283.
    [15]GIANNONE G, MONDIN M, GRILLO-BOSCH D, et al. Neurexin-1beta binding to neuroligin-1 triggers the preferential recruitment of PSD-95 versus gephyrin through tyrosine phosphorylation of neuroligin-1[J]. Cell Reports, 2013, 3: 1996-2007.
    [16]PRANGE O, WONG T P, GERROW K, et al. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin[J]. PNAS, 2004, 101: 13915-13920.
    [17]EL-HUSSEINI A E, SCHNELL E, CHETKOVICH D M, et al. PSD-95 involvement in maturation of excitatory synapses[J]. Science,2000, 290: 1364-1368.
    [18]EHRLICH I, KLEIN M, RUMPEL S, et al. PSD-95 is required for activity-driven synapse stabilization[J]. PNAS,2007, 104: 4176-4181.
    [19]NIKONENKO I, BODA B, STEEN S, et al. PSD-95 promotes synaptogenesis and multiinnervated spine formation through nitric oxide signaling[J]. The Journal of Cell Biology, 2008, 183: 1115-1127.
    [20]WU Q, SUN M, BERNARD L P, et al. Postsynaptic density 95 (PSD-95) serine 561 phosphorylation regulates a conformational switch and bidirectional dendritic spine structural plasticity[J]. The Journal of Biological Chemistry, 2017, 292: 16150-16160.
    [21]B QUE JC A R. PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex[J]. The Journal of Physiology,2003, 546: 859-867.
    [22]STEIN V, HOUSE D R, BREDT D S, et al. Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression[J]. Journal of Neuroscience, 2003, 23: 5503-5506.
    [23]EHRLICH I, MALINOW R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity[J]. Journal of Neuroscience, 2004, 24: 916-927.
    [24]ELIAS G M, FUNKE L, STEIN V, et al. Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins[J]. Neuron, 2006, 52: 307-320.
    [25]BRADLEY S A, STEINERT J R. Nitric oxide-mediated posttranslational modifications: Impacts at the synapse[J]. Oxidative Medicine and Celluar Longevity, 2016, 2016: 5681036.
    [26]NAGURA H, DOI T, FUJIYOSHI Y. Characterization of physiological phenotypes of dentate gyrus synapses of PDZ1/2 domain-deficient PSD-95-knockin mice[J]. Eurpean Journal Neuroscience, 2016, 43: 618-625.
    [27]MOHAN A, MATHER K A, THALAMUTHU A, et al. Gene expression in the aging human brain: an overview[J]. Current Opinion in Psychiatry,2016, 29: 159-167.
    [28]PANDEY S P, RAI R, GAUR P, et al. Development- and age-related alterations in the expression of AMPA receptor subunit GluR2 and its trafficking proteins in the hippocampus of male mouse brain[J]. Biogerontology,2015, 16: 317-328.
    [29]ROGERS J T, LIU C C, ZHAO N, et al. Subacute ibuprofen treatment rescues the synaptic and cognitive deficits in advanced-aged mice[J]. Neurobiology of Aging,2017, 53: 112-121.
    [30]MIGAUD M, CHARLESWORTH P, DEMPSTER M, et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein[J]. Nature, 1998, 396: 433-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700