基于光纤声呐传感器混沌锁频方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Chaotic Frequency Locking Method Based on Fiber Sonar Sensor
  • 作者:刘丹 ; 衣文索 ; 杜洋 ; 张叶浩
  • 英文作者:LIU Dan;YI Wensuo;DU Yang;ZHANG Yehao;School of Optoelectronic Engineering,Changchun University of Science and Technology;
  • 关键词:光纤光学 ; 光纤声呐 ; 弱信号检测 ; Duffing振子
  • 英文关键词:fiber optics;;fiber sonar;;weak signal detection;;Duffing oscillator
  • 中文刊名:CGJM
  • 英文刊名:Journal of Changchun University of Science and Technology(Natural Science Edition)
  • 机构:长春理工大学光电工程学院;
  • 出版日期:2019-02-15
  • 出版单位:长春理工大学学报(自然科学版)
  • 年:2019
  • 期:v.42
  • 基金:国家自然科学基金(61675035)
  • 语种:中文;
  • 页:CGJM201901007
  • 页数:5
  • CN:01
  • ISSN:22-1364/TH
  • 分类号:31-34+40
摘要
传统的水下声信号检测方法的不足之处是在滤除噪声的同时,有用信号也受到损失,且随着噪声的增大,检测精度也会降低。针对强噪声背景下水下声呐信号频率解耦问题,采用马赫曾德光纤声呐传感器搜集水下声呐信号,当声呐信号注入混沌系统,利用混沌系统对信号参数的敏感性及对噪声免疫性的特点,一定频率的信号会使系统处于大尺度周期态,信噪比可以达到-65dB,对声呐信号锁频明显。理论计算和实验结果表明,该混沌声呐信号处理方法具有极低的信噪比和较高的频率辨识能力。
        The insufficiency of traditional underwater acoustic signal detection methods is that with the noise being filtered out the useful signal is also lost and with the noise increasing the detection accuracy is also decreased. In order to solve the frequency decoupling problem of underwater sonar signal under strong noise background,the underwater sonar signal is collected by the Mach-Zehnder fiber sonar sensor. When the sonar signal is injected into the chaotic system,the sensitivity of the chaotic system to the signal parameters and the immunity to noise are used. A certain frequency signal will make the system in a large-scale periodic state;the signal-to-noise ratio can reach-65 dB;and the frequency of the sonar signal is obviously locked. Theoretical calculations and experimental results show that the chaotic sonar signal processing method has an extremely low SNR and high frequency identification capability.
引文
[1] Postolache O,Gir?o P,Pereira M. Underwater acoustic source localization based on passive sonar and intelligent processing[J].Instrumentation&Measurement Technology Conference,2007(39):1-4.
    [2] Kü?ükbayrak M,?zhan GüNE?,Arica N. Underwater Acoustic Signal Recognition Methods[J].Journal of Naval Science and Engineering,2009,5(03):64-79.
    [3] Cho H,Gu J,Joe H,et al. Acoustic beam profile-based rapid underwater object detection for an imaging sonar[J].Journal of Marine Science&Technology,2015,20(01):180-197.
    [4]马丽娜.光纤激光水听器技术[D].湖南:国防科学技术大学,2010.
    [5]张雅彬.光纤水听器对各种信号解调特性研究[D].哈尔滨:哈尔滨工程大学,2008.
    [6]段海鹏,唐文彦,刘丽华,等.中低频水下声信号的激光干涉法探测[J].光电子·激光,2009,20(09):1189-1192.
    [7]张晓琳,唐文彦,孙和义.基于Morlet小波的水下声信号频率识别[J].光电子·激光,2010(12):1839-1841.
    [8]曹增辉,郑田甜,孙腾飞,等.激光探测水下声信号的实验研究[J].光电技术应用,2014,29(02):17-21.
    [9]张烈山,张晓琳,刘刚,等.基于改进相位生成载波解调的水表面声波激光相干探测[J].中国激光,2017(09):212-220.
    [10]陈毅.贝塞尔函数比值法求定干涉型光纤水听器相移幅值的模拟试验和精度分析[J].声学与电子工程,2004(04):6-9.
    [11]倪明,李秀林,张仁和,等.全光光纤水听器系统海上试验[J].声学学报,2004,29(06):539-543.
    [12]王照霞,曹家年,陈琴仙,等.干涉型光纤水听器PGC解调处理研究[J].声学与电子工程,2002(03):1-7.
    [13]王泽锋,胡永明,孟洲,等.干涉型光纤水听器相位载波调制-解调中信号混叠产生的机理及解决方案[J].光学学报,2008,28(01):92-98.
    [14]李玉深,周波,李绪友.干涉型光纤水听器相位载波解调技术[J].传感器与微系统,2004,23(02):14-17.
    [15]刘彩红.基于Duffing混沌系统的弱信号检测[D].哈尔滨:哈尔滨工程大学,2016.
    [16]聂春燕.混沌系统与弱信号检测[M].北京:清华大学出版社,2009.14-16
    [17]李月,杨宝俊,石要武,等.混沌振子用于强噪声下微弱正弦信号的检测[J].吉林大学自然科学学报,2001(01):75-77.
    [18]王冠宇,陶国良,陈行,等.混沌振子在强噪声背景信号检测中的应用[J].仪器仪表学报,1997,18(02):98-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700