小麦NTL转录因子的全基因组鉴定及其在小麦与条锈菌互作过程中的表达变化分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genome-wide Identification of Wheat NTL Transcription Factors and Their Expression Patterns Analysis in the Wheat-stripe Rust Interaction
  • 作者:王培 ; 王凤涛 ; 常洪雷 ; 冯晶 ; 郭青云 ; 蔺瑞明
  • 英文作者:WANG Pei;WANG Fengtao;CHANG Honglei;FENG Jing;GUO Qingyun;LIN Ruiming;Scientific Observation and Experimental Station of Crop Pests in Xining,Ministry of Agriculture and Rural Affairs;Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province;State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University,Qinghai Academy of Agriculture and Forestry Sciences,Academy of Agriculture and Forestry Sciences,Qinghai University;State Key Laboratory for Biology of Plant Diseases and Insect Pests;Key Laboratory of Integrate Pest Management on Crops,Ministry of Agriculture and Rural Affairs,Institute of Plant Protection,Chinese Academy of Agricultural Sciences;Beijing Defoe Technology Co. Ltd.;
  • 关键词:小麦 ; 条锈病 ; NAC转录因子 ; 跨膜结构域
  • 英文关键词:wheat;;stripe rust;;NAC transcription factor;;transmembrane domain
  • 中文刊名:SWJZ
  • 英文刊名:Current Biotechnology
  • 机构:青海大学农林科学院,青海省农林科学院,农业农村部西宁作物有害生物科学观测实验站;青海省农业有害生物综合治理重点实验室;省部共建三江源生态与高原农牧业国家重点实验室;中国农业科学院植物保护研究所,植物病虫害生物学国家重点实验室;农业农村部作物有害生物综合治理重点实验室;北京迪福科技有限公司;
  • 出版日期:2019-03-25
  • 出版单位:生物技术进展
  • 年:2019
  • 期:v.9;No.50
  • 基金:国家重点研发计划项目(2018YFD0200408;2018YFD0200500)资助
  • 语种:中文;
  • 页:SWJZ201902004
  • 页数:8
  • CN:02
  • ISSN:33-1375/Q
  • 分类号:20-27
摘要
NTL(NAC with transmembrane motif 1-like,NTM1-LIKE)类转录因子是NAC转录因子家族的一员,其特征是除NAC结构域外,C末端具有跨膜结构域。NTL转录因子已被证实在植物发育以及响应生物和非生物胁迫中发挥着重要作用,但小麦中NTLs的研究相对较少。基于此,对小麦中NTL类转录因子进行全基因组鉴定,并分析NTLs的系统发育、基因结构、保守基序及其在小麦与亲和条锈菌互作过程的表达变化。结果表明,在小麦中有17个NTLs,属于7个同源群,分布在12条染色体上,亚细胞定位的预测分析结果显示,NTL转录因子在细胞核、质膜、叶绿体类囊体及内质网膜都有定位信号的出现。此外,部分NTL转录因子的表达受小麦与条锈菌亲和互作的诱导。研究结果为小麦NTL转录因子家族的功能分析提供了一定的参考。
        NTL(NAC with transmembrane motif 1-like, NTM1-LIKE) transcription factors belong to the NAC transcription factor family, characterized by a transmembrane domain at the C terminus besides the NAC domain. NTLs have been proved to play important roles in plant development and responding to biotic and abiotic stresses, while the studies of NTLs in wheat are relatively less. Based on this situation, genome-wide identification of NTLs in wheat was carried out, and the phylogeny, gene structure, conserved motifs of NTLs and their expression patterns in the wheat-stripe rust interaction were analyzed. The results showed that there were 17 NTLs in wheat, which belonged to 7 homologous groups, and located on 12 chromosomes. Predictive analysis of subcellular localization indicated that NTLs with localization signals generated in nucleus, plasma membrane, chloroplast thylakoid and endoplasmic reticulum. Besides, some NTLs were induced by the infection of stripe rust in compatible interaction. The results of this study provided a reference for the functional analysis of NTL transcription factor family in wheat.
引文
[1] Souer E, van Houwelingen A, Kloos D, et al.. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell, 1996, 85(2): 159-170.
    [2] Aida M, Ishida T, Fukaki H, et al.. Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant[J]. Plant Cell, 1997, 9(6): 841-857.
    [3] Tang Y M, Liu M Y, Gao S Q, et al.. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco[J]. Physiol. Plantarum., 2012, 144(3): 210-224.
    [4] Ooka H, Satoh K, Doi K, et al.. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res., 2003, 10(6): 239-247.
    [5] Nuruzzaman M, Manimekalai R, Sharoni A M, et al.. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene, 2010, 465(1-2): 30-44.
    [6] Podzimska-Sroka D, O′Shea C, Gregersen P, et al.. NAC transcription factors in senescence: From molecular structure to function in crops[J]. Plants, 2015, 4(3): 412-448.
    [7] Jensen M K, Kjaersgaard T, Petersen K, et al.. NAC genes: Time-specific regulators of hormonal signaling in Arabidopsis[J]. Plant Signal. Behav., 2010, 5(7): 907-910.
    [8] Nuruzzaman M, Sharoni A M, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Front. Microbiol., 2013, 4: 248.
    [9] Wang F, Lin R, Feng J, et al.. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana[J]. Front. Plant Sci., 2015, 6: 108.
    [10] Guo S, Dai S, Singh P K, et al.. A membrane-bound NAC-like transcription factor OsNTL5 represses the flowering in Oryza sativa[J]. Front. Plant Sci., 2018, 9: 555.
    [11] Lee S, Seo P J, Lee H J, et al.. A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis[J]. Plant J., 2012, 70(5): 831-844.
    [12] Tian H, Wang X, Guo H, et al.. NTL8 regulates trichome formation in Arabidopsis by directly activating R3 MYB genes TRY and TCL1[J]. Plant Physiol., 2017, 174(4): 2363-2375.
    [13] Kim S G, Lee A K, Yoon H K, et al.. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination[J]. Plant J., 2008, 55: 77-88.
    [14] Block A, Toruňo T Y, Elowsky C G, et al.. The Pseudomonas syringae type III effector HopD1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the Arabidopsis transcription factor NTL9[J]. New Phytol., 2014, 201(4): 1358-1370.
    [15] Xia N, Zhang G, Sun Y F, et al.. TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses[J]. Physiol. Mol. Plant P., 2010, 74(5-6): 394-402.
    [16] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol. Biol. Evol., 2016, 33(7): 1870-1874.
    [17] Kim S G, Lee S, Seo P J, et al.. Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice[J]. Genomics, 2010, 95(1): 56-65.
    [18] Shih C F, Hsu W H, Peng Y J, et al.. The NAC-like gene ANTHER INDEHISCENCE FACTOR acts as a repressor that controls anther dehiscence by regulating genes in the jasmonate biosynthesis pathway in Arabidopsis[J]. J. Exp. Bot., 2013, 65(2): 621-639.
    [19] Morishita T, Kojima Y, Maruta T, et al.. Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light[J]. Plant Cell Physiol., 2009, 50(12): 2210-2222.
    [20] Ning Y Q, Ma Z Y, Huang H W, et al.. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14[J]. Nucl. Acids Res., 2015, 43(3): 1469-1484.
    [21] De Clercq I, Vermeirssen V, Van Aken O, et al.. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis[J]. Plant Cell, 2013, 25(9): 3472-3490.
    [22] Safrany J, Haasz V, Mate Z, et al.. Identification of a novel cis-regulatory element for UV-B-induced transcription in Arabidopsis[J]. Plant J., 2008, 54(3): 402-414.
    [23] Yang Z T, Wang M J, Sun L, et al.. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants[J]. PLoS Genet., 2014, 10(3): e1004243.
    [24] Yoon H K, Kim S G, Kim S Y, et al.. Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis[J]. Mol. Cells, 2008, 25(3): 438-445.
    [25] Yang Z T, Lu S J, Wang M J, et al.. A plasma membrane-tethered transcription factor, NAC062/ANAC062/NTL6, mediates the unfolded protein response in Arabidopsis[J]. Plant J., 2014, 79(6): 1033-1043.
    [26] Seo P J, Kim M J, Park J Y, et al.. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis[J]. Plant J., 2010, 61(4): 661-671.
    [27] Seo P J, Kim S G, Park C M. Membrane-bound transcription factors in plants[J]. Trends Plant Sci., 2008, 13(10): 550-556.
    [28] Shao H, Wang H, Tang X. NAC transcription factors in plant multiple abiotic stress responses: Progress and prospects[J]. Front. Plant Sci., 2015, 6: 902.
    [29] Seo P J. Recent advances in plant membrane-bound transcription factor research: Emphasis on intracellular movement[J]. J. Integr. Plant Biol., 2014, 56(4): 334-342.
    [30] Slabaugh E, Brandizzi F. Membrane-tethered transcription factors provide a connection between stress response and developmental pathways[J]. Plant Signal. Behav., 2011, 6(8): 1210-1211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700