HPT不同压力下纯钼的组织和性能及热稳定性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure, Performance and Thermal Stability of Pure Molybdenum by HPT Method Under Different Pressure
  • 作者:李萍 ; 林泉 ; 聂爱琴 ; 田野 ; 薛克敏
  • 英文作者:Li Ping;Lin Quan;Nie Aiqin;Tian Ye;Xue Kemin;Hefei University of Technology;
  • 关键词:纯钼粉末 ; 高压扭转 ; 压力 ; 微观结构 ; 热稳定性
  • 英文关键词:pure molybdenum powder;;high-pressure torsion;;applied pressure;;microstructure evolution;;thermal stability
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:合肥工业大学;
  • 出版日期:2019-02-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.391
  • 基金:国家自然科学基金(51675154);; 教育部新世纪优秀人才支持计划(NCET-13-0657)
  • 语种:中文;
  • 页:COSE201902046
  • 页数:5
  • CN:02
  • ISSN:61-1154/TG
  • 分类号:321-325
摘要
通过高压扭转实验,在350℃条件下将纯钼粉末制备成相对密度达98%以上的金属钼坯,利用多种检测手段分析了高压扭转过程中钼粉颗粒孔隙演变及致密强化规律。通过改变预压钼坯压力参数,探讨了压力对压扭钼坯微观结构和力学性能及其热稳定性的影响。结果表明:压力由2.0 GPa增大到3.0 GPa,压扭钼坯致密度提升显著,其内部亚晶细化,微观应变增加,试样整体显微硬度值随压力增大而升高,边缘处略有降低。随压力增大,差热分析(DSC)后组织未发生显著长大,热稳定性较好。
        The pure molybdenum powder was consolidated to bulk materials with a relative density over 98% via the high-pressure torsion(HPT) processing at 350 oC. The deformation of particles and pores, the evolution of crystallite size and dislocation density, and the strengthening mechanism during HPT processing were analyzed through scanning electron microscopy(SEM), X-ray diffraction(XRD)and the Vickers microhardness. The influence of applied pressure on the microstructure evolution, mechanical properties and thermal stability during HPT were discussed. The results show that the relative density and average microhardness of the HPT processed sample improve obviously with the increasing applied pressure from 2.0 GPa to 3.0 GPa. Also, the crystallite size and microstrain experience a decrease and an increase with the increasing applied pressure, respectively, which leads to the increase in dislocation density. In addition, the grain size in the HPT processed sample has a finite increase during the DSC processing, which indicates the thermal stability of the HPT processed microstructure.
引文
[1]Alexander P,Zhilyaev A P,Terence G et al.Progress in Materials Science[J],2008,53(6):893
    [2]Li Xiao(李晓),Li Ping(李萍),Xue Kemin(薛克敏)et al.The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J],2012,22(2):74
    [3]Kecskes L J,Cho K C,Dowding R J et al.Materials Science and Engineering A[J],2007,467(1-2):33
    [4]Liang Chen,Li Ping,Tian Ye et al.Rare Metal Materials and Engineering[J],2016,45(12):3089
    [5]Edalati K,Toh S,Iwaoka H et al.Acta Materialia[J],2012,60(9):3885
    [6]Li Ping,Wang Xue,Xue Ke-Min et al.International Journal of Refractory Metals and Hard Materials[J],2016,54:439
    [7]Xu Kedian(徐克玷).Material Science and Engineering of Molybdenum(钼的材料科学与工程)[M].Beijing:Metallurgical Industry Press,2014
    [8]Wang Xue,Li Ping,Xue Kemin.Journal of Materials Engineering and Performance[J],2015,24(11):4510
    [9]Tian Ye(田野),Li Ping(李萍),Wang Xue(王雪)et al.Materials Science and Engineering of Powder Metallurgy(粉末冶金材料科学与工程)[J],2015,20(1):32
    [10]Huang Yongzhang(黄永章),Li Xingyan(李兴彦),Wang Lijun(王力军)et al.Rare Matels(稀有金属)[J],2010,34(5):685
    [11]Seungwon L,Kaveh E,Zenji H.Materials Transactions[J],2010,51(7):1072
    [12]Wetscher F,Vorhauer A,PipPan R.Materials Science and Engineering A[J],2005,410-411:213
    [13]Cui Zhongqi(崔忠圻),Qin Yaochun(覃耀春).Physical Metallurgy and Heat Treatment(金属学与热处理)[M].Beijing:China Machine Press,2009
    [14]Sakai T,Belyakov A,Kaibyshev R et al.Progress in Materials Science[J],2014,60:130
    [15]Alfonso A,Jensen D J,Luo G N et al.Fusion Engineering&Design[J],2015,98-99:1924
    [16]Andrievski R A.Journal of Materials Science[J],2014,49(4):1449

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700