藻蓝蛋白及其水解物促进玉米直支链淀粉回生机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism of retrogradation enhancement of maize amylose and amylopectin by phycocyanin and its hydrolysate
  • 作者:王雪青 ; 蒋荣霞 ; 郭志鹏 ; 连喜军 ; 郭俊杰
  • 英文作者:Wang Xueqing;Jiang Rongxia;Guo Zhipeng;Lian Xijun;Guo Junjie;Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science,Tianjin University of Commerce;
  • 关键词:农产品 ; 淀粉 ; 水解 ; 回生淀粉 ; 藻蓝蛋白 ; 回生机理
  • 英文关键词:agricultural products;;starch;;hydrolysis;;retrograded starch;;phycocyanin;;retrogradation mechanism
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:天津商业大学生物技术与食品科学学院天津市食品生物技术重点实验室;
  • 出版日期:2019-04-23
  • 出版单位:农业工程学报
  • 年:2019
  • 期:v.35;No.360
  • 基金:国家自然科学基金项目(31571834;31871811);; 天津市科技重大专项与工程(一二三产业融合发展科技示范工程)(项目编号18ZXYENC00080);; 天津市高等学校大学生创新训练计划项目(201810069067);; 天津市高等学校创新团队“农产品加工贮藏新新技术及相关机理研究”(编号TD13-5087);; 天津市自然科学基金(18JCZDJC98200)资助
  • 语种:中文;
  • 页:NYGU201908038
  • 页数:11
  • CN:08
  • ISSN:11-2047/S
  • 分类号:332-342
摘要
藻蓝蛋白是螺旋藻中对人体具有多种保健功能的蛋白,初步发现其具有明显促进玉米淀粉回生的作用。为了进一步探索其促进玉米淀粉回生的机理,该文将1%和10%藻蓝蛋白及其水解物添加至玉米直链、支链及其混合淀粉中,测定其对淀粉回生的影响,通过X-射线衍射、差示扫描量热、红外和固体核磁分析藻蓝蛋白及其水解物促进玉米淀粉回生机理。研究结果表明,添加1.0%藻蓝蛋白对直链淀粉回生率没有影响,使支链淀粉回生率提高了61.4%;而添加量为10%的藻蓝蛋白使直链淀粉回生率提高了60.4%,使支链淀粉回生率提高了69.6%。藻蓝蛋白水解肽低的添加量(1.0%)对玉米直链的回生率影响不显著,但使支链淀粉的回生提高了28.1%;水解肽高添加量(10.0%)使玉米直链淀粉的回生率提高了184.7%,使玉米支链淀粉的回生率提高了47.0%。紫外可见扫描显示碱性蛋白酶水解可使处于藻蓝蛋白结构中心的藻蓝素外露出来。X射线结果表明藻蓝蛋白与玉米直链支链淀粉混合回生后分别产生一个衍射角为2θ为16.44o、16.60o尖锐衍射峰。差热结果显示,藻蓝蛋白与玉米支链淀粉混合、藻蓝蛋白水解物与玉米直链淀粉混合后,所得回生淀粉均失去结晶峰,而出现唯一重结晶峰。红外和~(13)C固体核磁结果表明,藻蓝蛋白通过精氨酸氨基与玉米支链淀粉还原端醛基形成氢键,利用藻蓝蛋白中疏水性氨基酸驱离玉米支链淀粉侧链末端水分子,促使支链淀粉末端双螺旋解旋,加快了支链淀粉末端链间氢键形成,提高了其回生率;而藻蓝蛋白水解物中半胱氨酸巯基和玉米直链淀粉还原端醛基在与直链淀粉混合回生过程形成氢键,通过分子甩动使直链淀粉双螺旋解开,大大促进了玉米直链淀粉间形成氢键,提高了其回生率。该研究提供了一种提高玉米淀粉回生率的新技术。
        Phycocyanin is a kind of dark blue powder isolated from spirulina and has a variety of health functions of anti-cancer, blood cell regeneration, etc. In order to widen its application in food, phycocyanin and its hydrolysis are added into maize amylose/amylopectin paste during retrogradation, it has been found that they can promote the retrogradation of amylose/amylopectin. In order to further explore its mechanism of promoting the retrogradation of maize starch, the effects of contents of phycocyanin or its hydrolysate in maize amylose/amylopectin on retrogradation rate were determined, and the method of X-ray diffraction, differential scanning calorimetry, infrared and solid nuclear magnetic analysis were used. The results showed that phycocyanin hydrolyzate promoted maize amylose retrogradation more obviously than that of phycocyanin. 10% addition of phycocyanin hydrolyzate could make maize amylose retrogradation rate increase from 27% to 76.9%, 184.8% higher. Phycocyanin promoted the retrogradation of maize amylopectin more pronouned than its hydrolysate, 10% addition of phycocyanin let maize amylopectin retrogradation rate increase from 26.7% to 45.3%, which increased by 69.6%. According to the UV-visible scanning, phycocyanin hydrolysis co cause the phycocyanin pigment in the center of phycocyanin to be exposed. X-ray results indicated that addition of phycocyanin to maize amylopectin induced a sharper peak at 2θ is 16.60o, as well as that mixture of phycocyanin hydrolysate and maize amylose caused a same sharper one at 2θ is 16.44o. Compared to diffraction angles of retrograded maize amylose/amylopectin, the decrease of sharp diffraction angle in those mixtures supported that interplanar distance at this angle became larger. DSC results demonstrated that mixture of phycocyanin and maize amylopectin, or mixture of phycocyanin hydrolysate and maize amylose, which both promoted retrogradation greatly, both caused the presence of re-crystallization peaks and loss of crystallization peaks. In other words, more phycocyanin/hydrolysate chains and maize amylose/amylopectin with similar length involved in retrogradation. Such process should deal with unwinding of maize amylose/amylopectin. The results of infrared and 13 C solid NMR showed that phycocyanin might be hydrolyzed into arginine-rich polypeptide with hydrophilic, polysaccharides and polypeptide with hydrophobic. The mechanism for phycocyanin to promote retrogradation of maize amylopectin was that the formation of hydrogen bond between the arginine amino acid of phycocyanin and aldehyde of reduction end in maize amylopectin, and water molecule of maize amylopectin being driving away from the side chain end by phycocyanin hydrophobic amino acid, promoted the end of the chain-branched starch double helix spin, accelerate the formation of hydrogen bond between the end chains of amylopectin, which lead to improve retrogradation rate of maize amylopectin. The mechanism for phycocyanin hydrolysate to increase retrogradation rate of maize amylose was that the hydrogen bond formed between the sulfydryl of cysteine in phycocyanin hydrolyzate and aldehyde of reduction end in maize amylose during retrogradation of mixture, then the double helix of amylose was unlocked by molecular swinging, which greatly promoted the formation of hydrogen bond between amylose and improved the retrogradation rate of amylose. This study provides a new technique to improve the retrogradation rate of maize starch.
引文
[1]Fuentes-Zaragoza E,Riquelme-Navarrete M J,SánchezZapata E,et al.Resistant starch as functional ingredient:Areview[J].Food Research International,2010,43(4):931-942.
    [2]张坤生,周雪,连喜军,等.冷藏条件下荞麦淀粉回生规律的研究[J].食品工业科技,2013,34(16):157-158,177.Zhang Kunsheng,Zhou Xue,Lian Xijun,et al.The study on the retrogadation regular of buckwheat starch under cold storage condition[J].Science and Technology of Food Industry(STFI),2013,34(16):157-158,177.(in Chinese with English abstract)
    [3]张坤生,宁仲娟,连喜军,等.冷冻对糯米淀粉回生的影响[J].食品工业科技,2013,34(21):49-51.Zhang Kunsheng,Ning Zhongjuan,Lian Xijun,et al.Effect of freezing on starch retrogradation of glutinous rice starch[J].Science and Technology of Food Industry(STFI),2013,34(21):49-51.(in Chinese with English abstract)
    [4]连喜军,张燕.不同老化工艺对甘薯回生抗性淀粉制备率的影响[J].粮食加工,2012,37(3):46-48.Lian Xijun,Zhang Yan.Effects of different aging processes on the preparation rate of resistant starch of sweet potato[J].Grain Processing,2012,37(3):46-48.(in Chinese with English abstract)
    [5]Masatcioglu T M,Sumer Z,Koksel H.An innovative approach for significantly increasing enzyme resistant starch type 3 content in high amylose starches by using extrusion cooking[J].Journal of Cereal Science,2017,74:95-102.
    [6]Jagannadham K,Parimalavalli R,Babu A S.Effect of triple retrogradation treatment on chickpea resistant starch formation and its characterization[J].Journal of Food Science and Technology,2017,54(4):901-908.
    [7]Silverio J,Fredriksson H,Andersson R,et al.The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit-chain length distribution[J].Carbohydrate Polymers,2000,42(2):175-184.
    [8]连喜军,罗庆丰,刘学燕,等.超声波对甘薯回生抗性淀粉生成的作用[J].食品研究与开发,2011,32(1):61-64.Lian Xijun,Luo Qingfeng,Liu Xueyan,et al.Effects of ultrasonic wave on the formation of resistant starch of sweet potato[J].Food Research and Development,2011,32(1):61-64.(in Chinese with English abstract)
    [9]连喜军,钱瑞,刘敬,等.电解法和微波法联合处理提高甘薯淀粉回生率[J].粮食加工,2011,36(5):51-54.Lian Xijun,Qian Rui,Liu Jing,et al.The retrogradation rate of sweet potato starch was improved by electrolysis and microwave[J].Food Research and Development,2011,36(5):51-54.(in Chinese with English abstract)
    [10]Demirkesen-Bicak H,Tacer-Caba Z,Nilufer-Erdil D.Pullulanase treatments to increase resistant starch content of black chickpea(Cicer arietinum L.)starch and the effects on starch properties[J].International journal of Biological Macromolecules,2018,111:505-513.
    [11]连喜军,赵璐,牛瑞华,等.中温?-淀粉酶处理提高甘薯回生抗性淀粉制备率[J].粮食与油脂,2010(8):21-23.Lian Xijun,Zhao Lu,Niu Ruihua,et al.The preparation rate of retrograde resistant starch of sweet potato was improved by medium temperature and?-amylase treatment[J].Cereals&Oils,2010(8):21-23.(in Chinese with English abstract)
    [12]丁文平,李清,夏文水.淀粉酶对大米淀粉回生影响机理的研究[J].粮食与饲料工业,2005(10):16-17.Ding Wenping,Li Qing,Xia Wenshui.Study on the mechanism of amylase on the retrogradation of rice starch[J].Cereal&Feed Industry,2005(10):16-17.(in Chinese with English abstract)
    [13]孟宪昉,刘立增,郭俊杰,等.草酸侵蚀马铃薯回生淀粉制备晶种促进玉米淀粉回生的研究[J].食品工业科技,2016,37(3):131-134,148.Meng Xianfang,Liu Lizeng,Guo Junjie,et al.Study on the effect of oxalic acid on the retrogradation of corn starch by seed preparation of potato starch[J].Science and Technology of Food Industry(STFI),2016,37(3):131-134,148.(in Chinese with English abstract)
    [14]Luo D,Li Y,Xu B,et al.Effects of inulin with different degree of polymerization on gelatinization and retrogradation of wheat starch[J].Food chemistry,2017,229:35-43.
    [15]Lian X J,Guo J J,Wang D L,et al.Effects of protein in wheat flour on retrogradation of wheat starch[J].Journal of Food Science,2014,79(8):1505-1511.
    [16]郭俊杰,马乔治,康海岐,等.含醇溶蛋白小麦回生抗性直支链淀粉性质分析[J].农业工程学报,2018,34(4):293-298.Guo Junjie,Ma Qiaozhi,Kang Haiqi,et al.Analysis on properties of starch with alcohol-soluble protein in wheat resistant to direct-branched chain[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2018,34(4):293-298.(in Chinese with English abstract)
    [17]刘杨,王雪青,赵培,等.水提分离钝顶螺旋藻藻蓝蛋白及其稳定性研究[J].天津师范大学学报(自然科学版),2008(3):11-14.Liu Yang,Wang Xueqing,Zhao Pei,et al.Study on the separation of phycocyanin from spirulina platensis by water extraction and its stability[J].Journal of Tianjin Normal University(Natural Science Edition),2008(3):11-14.(in Chinese with English abstract)
    [18]Lian X,Dong S,Gao K,et al.Sweet potato amylose and amylopectin with narrower distribution of molar mass and chain length obtained by a repeated retrogradation-hydrolysis procedure[J].Journal of Applied Polymer Science,2016,133(34):8311-8319.
    [19]Lian X,Sun H,Li L,et al.Characterizing the chemical features of lipid and protein in sweet potato and maize starches[J].Starch‐St?rke,2014,66(3/4):361-368.
    [20]殷钢,刘铮,刘飞,等.钝顶螺旋藻中藻蓝蛋白的分离纯化及特性研究[J].清华大学学报(自然科学版),1999(6):21-23.Yin Gang,Liu Zheng,Liu Fei,et al.Isolation,purification and characterization of phycocyanin from spirulina platensis[J].Journal of Tsinghua University(Science and Technology),1999(6):21-23.(in Chinese with English abstract)
    [21]李文军,陈敏.蓝隐藻藻蓝蛋白结构与功能稳定性研究[J].海洋科学,2013,37(7):33-40.Li Wenjun,Chen Min.Study on the structure and functional stability of cyanobacteria[J].Marine Sciences,2013,37(7):33-40.(in Chinese with English abstract)
    [22]汪兴平.葛仙米藻蓝蛋白的一级结构、构象及抗氧化活性研究[D].武汉:华中农业大学,2006.Wang Xingping.Studies on Primary Structure and Comformation as well as Antioxidation Activities of Phycocyanin from Nostoc Sphaeroids kutz[D].Wuhan:Huazhong Agricultural University.2006.(in Chinese with English abstract)
    [23]郭俊杰,孙海波,李琳,等.参与回生玉米直链和支链淀粉理化特性[J].食品工业科技,2014,35(14):91-94Guo Junjie,Sun Haibo,Li Lin,et al.Physicochemical characteristics of amylose and amylopectin fractions from retrograded maize starch[J].Science and Technology of Food Industry(STFI),2014,35(14):91-94.(in Chinese with English abstract)
    [24]冯霞,杜晓冉,周润生,等.用差热法研究甘薯直、支链淀粉回生动力学[J].河南工业大学学报(自然科学版),2016,37(5):26-33.Feng Xia,Du Xiaoran,Zhou Runsheng,et al.The study of kinetics of sweet potato amylose and amylopectin during retrogradation by DSC method[J].Journal of Henan University of Technology(Natural Science Edition)(JHUT),2016,37(5):26-33.(in Chinese with English abstract)
    [25]谢新华,贺平,宋一诺,等.月桂酸对小麦淀粉凝胶回生特性的影响[J].麦类作物学报,2016,36(10):1350-1354.Xie Xinhua,He Ping,Song Yinuo,et al.Effect of luaric acid on the retrogradation properties of wheat starch gel[J].Journal of Triticeae Crop(JTC).2016,36(10):1350-1354.(in Chinese with English abstract)
    [26]牛凯,李贵萧,代养勇,等.碾轧时间和频率对玉米淀粉机械力化学效应的影响[J].农业工程学报,2017,33(4):293-301.Niu Kai,Li Guixiao,Dai Yangyong,et al.Effect of milling time and frequency on mechanical and chemical effects of corn starch[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(4):293-301.(in Chinese with English abstract)
    [27]吴跃.抗高直链大米淀粉回生的物理修饰及其回生的检测和表征[D].无锡:江南大学,2010.Wu Yue.Physical Modification of Anti-high Linear Rice Starch Retrogradation and Detection and Characterization of its Retrogradation[D].Wuxi:Jiangnan University,2010.(in Chinese with English abstract)
    [28]Doyle B B,Bendit E G,Blout E R.Infrared spectroscopy of collagen and collagen-like polypeptides[J].Biopolymers:Original Research on Biomolecules,1975,14(5):937-957.
    [29]林启山,张建平,曾繁杰,等.海洋红藻和蓝藻中的别藻蓝蛋白结构特征的比较[J].植物生理学报,1992(3):253-259.Lin Qishan,Zhang Jianping,Zeng Fanjie,et al.Comparison of structural characteristics of allophycocyanin in marine red algae and cyanobacteria[J].Plant Physiology Journal,1992(3):253-259.(in Chinese with English abstract)
    [30]Alberti E,Gilbert S M,Tatham A S,et al.Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and1H solid-state NMR spectroscopy.I.Role of covalent crosslinking[J].Biopolymers,2002,67(6):487-498.
    [31]Calucci L,Forte C,Galleschi L,et al.13 C and 1 H solid state NMR investigation of hydration effects on gluten dynamics[J].Int.J.Biol.Macromol.2003,32(3):179-189.
    [32]Jiang W,Zhou Z,Wang D,et al.Transglutaminase catalyzed hydrolyzed wheat gliadin grafted with chitosan oligosaccharide and its characterization[J].Carbohyd.Polym.2016,153:105-114.
    [33]Flores-Morales A,Jiménez-Estrada M,Mora-Escobedo R.Determination of the structural changes by FT-IR,Raman,and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas[J].Carbohydrate Polymers,2012,87(1):61-68.
    [34]Mc Intyre D D,Ho C,Vogel H J.One‐dimensional nuclear magnetic resonance studies of starch and starch products[J].Starch‐St?rke,1990,42(7):260-267.
    [35]Zhang X,Burgar I,Lourbakos E,et al.The mechanical property and phase structures of wheat proteins/polyvinyl alcohol blends studied by high-resolution solid-state NMR[J].Polymer,2004,45(10):3305-3312.
    [36]Flores-Morales A,Jiménez-Estrada M,Mora-Escobedo R.Determination of the structural changes by FT-IR,Raman,and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas[J].Carbohydrate Polymers,2012,87(1):61-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700