带毛细管的变频压缩机空气源热泵实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on air source heat pump system with compressor frequency conversion and capillary
  • 作者:牛建会 ; 许树学 ; 刘帅领 ; 马国远
  • 英文作者:NIU Jianhui;XU Shuxue;LIU Shuailing;MA Guoyuan;College of Environmental and Energy Engineering,Beijing University of Technology;College of Energy and Environmental Engineering,Hebei University of Architecture;
  • 关键词:空气源热泵 ; 毛细管 ; 压缩机变频 ; 制热性能
  • 英文关键词:air source heat pump;;capillary;;compressor with frequency conversion;;heating performance
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:北京工业大学环境与能源工程学院;河北建筑工程学院能源与环境工程学院;
  • 出版日期:2018-12-04 14:23
  • 出版单位:化工学报
  • 年:2018
  • 期:v.69
  • 基金:北京市教委科技计划项目(SQKM201810005011);; 2017年河北省省级科技计划项目(17274515)~~
  • 语种:中文;
  • 页:HGSZ2018S2027
  • 页数:6
  • CN:S2
  • ISSN:11-1946/TQ
  • 分类号:190-195
摘要
针对家用"煤改电"空气源热泵,提出采用毛细管作为节流元件替代热力膨胀阀或电子膨胀阀,搭建了热泵系统实验装置。研究压缩机不同频率下,不同的毛细管长度对压缩机吸气压力、排气温度和机组制热量等制热性能的影响。实验结果表明,毛细管替代热力膨胀阀或电子膨胀阀后,系统能够长时间稳定运行;毛细管长度为500mm、压缩机频率为35Hz时系统制热性能最优,制热量、制热COP获得最大值,而其吸气压力和排气温度适中。
        Aiming at the household air source heat pump for "coal to electricity",a capillary as a throttle element is proposed to replace the thermal expansion valve or the electronic expansion valve,and an experimental device for heat pump system was set up.The influence of different capillary length on the compressor suction pressure,exhaust temperature and heat capacity of the unit under variable frequency regulation of compressor were experimentally studied.The experimental results show that,after replacing the thermal expansion valve or the electronic expansion valve,the system can run stably for a long time.The system has the best thermal performance when the capillary length is 500 mm and the compressor frequency is 35 Hz,and the heating capacity and heating COP are the largest,but the suction pressure and the exhaust temperature are moderate.
引文
[1]高原,田怀璋,曾艳,等.用数值方法分析绝热毛细管的流量特性[J].流体机械,2002,30(7):47-49.GAO Y,TIAN H Z,ZENG Y,et al.Numerical simulation of two-phase flow in capillary-tubes[J].Fluid Machinery,2002,30(7):47-49.
    [2]饶荣水,周泽,申建军,等.采用R134a和R600a制冷剂系统毛细管特性分析[J].制冷与空调,2005,5(1):70-74.RAO R S,ZHOU Z,SHEN J J,et al.Capillary tube performance with R134a and R600a refrigerant[J].Refrigeration&Airconditioning,2005,5(1):70-74.
    [3]BANSAL P K,RUPASINGHE A S.An homogeneous model for adiabatic capillary tubes[J].Applied Thermal Engineering,1998,18(3):207-219.
    [4]孙涛,郭宪民,杨明.毛细管长度对热泵热水器系统动态性能的影响[J].流体机械,2009,37(8):58-62.SUN T,GUO X M,YANG M.Effects of the capillary length on the dynamic performance of an air source heat pump water heater[J].Fluid Machinery,2009,37(8):58-62.
    [5]郭宪民,王燕,沈晨,等.排风余热回收型热泵热水器动态性能实验研究[J].流体机械,2007,35(3):55-59.GUO X M,WANG Y,SHEN C,et al.Experimental investigation on the transient performance of an exhaust air heat pump water heater[J].Fluid Machinery,2007,35(3):55-59.
    [6]JI J,CHOW TT,PEI G,et al.Domestic air conditioner and integrated water heater for subtropical climate[J].Applied Thermal Engineering,2003,23(5):581-592.
    [7]JI J,PEI G,CHOW T T,et al.Performance of multi-functional domestic heat pump system[J].Applied Energy,2005,80(3):307-326.
    [8]杨礼桢,岑敏婷,王劲柏.热泵热水器变工况下毛细管节流特性探讨[J].流体机械,2011,39(6):74-79.WANG L Z,CEN M T,WANG J B.Study on capillary throttling characteristic of heat pump water heater under variable conditions[J].Fluid Machinery,2011,39(6):74-79.
    [9]张春路,丁国良,李灏.毛细管内两相流的通用积分模型[J].化工学报,1999,50(4):552-557.ZHANG C L,DING G L,LI H.General integral model of two-phase flow in capillary tubes[J].Journal of Chemical Industry and Engineering(China),1999,50(4):552-557.
    [10]丁国良,张春路,李灏,等.毛细管内流动的近似分析模型[J].科学通报,1998,43(23):2506-2508.DING G L,ZHANG C L,LI H,et al.Approximate analytical model for capillary flow[J].Chinese Science Bulletin,1998,43(23):2506-2508.
    [11]SAMI S M,TRIBES C.Numerical prediction of capillary tube behavior with pure and binary alternative refrigerants[J].Applied Thermal Engineering,1998,18(6):491-502.
    [12]SINPIBOON J,WONGWISES S.Numerical investigation of refrigerant flow through non-adiabatic capillary tubes[J].Applied Thermal Engineering,2002,22(18):2015-2032.
    [13]张春路,丁国良.毛细管并联节流的当量方法[J].机械工程学报,2002,38(3):43-45.ZHANG C L,DING G L.Equivalent method for parallel capillary tubes[J].Journal of Mechanical Engineering,2002,38(3):43-45.
    [14]周斌,章伯其.绝热毛细管长度数值计算[J].机械设计与制造,2005,(10):35-37.ZHOU B,ZHANG B Q.Numerical simulation of adiabatic capillary tubes[J].Machinery Design&Manufacture,2005,(10):35-37.
    [15]ZHOU G B,ZHANG Y F.Experimental investigation on hysteresis effect of refrigerant flowing through a coiled adiabatic capillary tube[J].Energy Conversion and Management,2006,47(18/19):3084-3093.
    [16]CHINGULPITAK S,WONGWISES S.A comparison of flow characteristics of refrigerants flowing through adiabatic straight and helical capillary tubes[J].International Communications in Heat and Mass Transfer,2011,38(3):398-404.
    [17]李少争,余晓明,孔明,等.热泵中毛细管管内流动特性的仿真分析[J].建筑节能,2015,43(12):28-31.LI S Z,YU X M,KONG M,et al.Heat pump flow characteristics of the capillary tube in the simulation analysis[J].Building Energy Conservation,2015,43(12):28-31.
    [18]王栋,李蒙,戚利利,等.二氧化碳制冷系统毛细管的设计及实验研究[J].化工学报,2011,62(10):2753-2758.WANG D,LI M,QI L L,et al.Design and experimental study of capillary tube in transcritical carbon dioxide refrigeration system[J].CIESC Journal,2011,62(10):2753-2758.
    [19]曹雯莉,陈东,谢继红,等.制冷热泵装置毛细管组件及其应用特性研究[J].天津科技大学学报,2013,28(5):75-78.CAO W L,CHEN D,XIE J H,et al.Research on throttling characteristics of the capillary tube combination unit in refrigerators and heat pumps[J].Journal of Tianjin University of Science&Technology,2013,28(5):75-78.
    [20]苏顺玉,张春枝,陈俭.空气源热泵毛细管节流空调系统的研究[J].湖南大学学报(自然科学版),2009,36(12):1-3.SU S Y,ZHANG C Z,CHEN J.Study on the capillary tube adjusting air-conditioning system in the air source heat pump[J].Journal of Hunan University(Natural Science),2009,36(12):1-3.
    [21]CHINGULPITAK S,WONGWISES S.Two-phase flow model of refrigerants flowing through helically coiled capillary tubes[J].Applied Thermal Engineering,2010,30(14/15):1927-1936.
    [22]WONGWISES S,SONGNETICHAOVALIT T,LOKATHADA N,et al.Two-phase separated flow model of refrigerants flowing through capillary tubes[J].International Communications in Heat and Mass Transfer,2000,27(5):343-356.
    [23]LIANG S M,WONG T N.Numerical modeling of two-phase refrigerant flow through adiabatic capillary tubes[J].Applied Thermal Engineering,2001,21(10):1035-1048.
    [24]邵双全,石文星,李先庭,等.制冷剂充灌量和毛细管长度对空调系统性能的影响[J].低温工程,2002,(2):48-53,61.SHAO S Q,SHI W X,LI X T,et al.Influence on the performance of air conditioners by the mass of refrigerant and the length of capillary[J].Cryogenics,2002,(2):48-53,61.
    [25]FIORELLI F A S,SILVA C A S,HUERTA A A S.Metastable flow of R-410A in capillary tubes[J].Applied Thermal Engineering,2013,51(1/2):1181-1190.
    [26]JUNG D,PARK C,PARK B.Capillary tube selection for HCFC22alternatives[J].International Journal of Refrigeration,1999,22(8):604-614.
    [27]赵丹,丁国良,徐言生.变径毛细管流量关联式开发[J].化工学报,2017,68(1):57-62.ZHAO D,DING G L,XU Y S.Development of correlation for mass flow rate through varying diameter capillary tube[J].CIESC Journal,2017,68(1):57-62.
    [28]乐慧,李好玥,江亿.用空气源热泵实现农村采暖的“煤改电”同时为电力削峰填谷[J].中国能源,2016,38(11):9-15.LE H,LI H Y,JIANG Y.Using air source heat pump to realize“coal to electricity”in rural heating with power peak shaving and valley filling[J].Energy of China,2016,38(11):9-15.
    [29]刘子雄,周恩泽,濮儒川,等.北京地区“煤改电”供暖系统的分析与思考[J].山西建筑,2017,43(25):133-135.LIU Z X,ZHOU E Z,PU R C,et al.Analysis and reflection on heating system of“coal to electricity”in Beijing area[J].Shanxi Architecture,2017,43(25):133-135.
    [30]吴迪,胡斌,王如竹,等.我国空气源热泵供热现状、技术与政策[J].制冷技术,2017,37(5):1-7.WU D,HU B,WANG R Z.et al.Present situation,technology and policy of air source heat pump heating in China[J].Refrigeration Technology,2017,37(5):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700