基于神光Ⅲ原型装置开展的激光直接驱动准等熵压缩研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG Ⅲ prototype laser facility
  • 作者:薛全喜 ; 江少恩 ; 王哲斌 ; 王峰 ; 赵学庆 ; 易爱平 ; 丁永坤 ; 刘晶儒
  • 英文作者:Xue Quan-Xi;Jiang Shao-En;Wang Zhe-Bin;Wang Feng;Zhao Xue-Qing;Yi Ai-Ping;Ding Yong-Kun;Liu Jing-Ru;Research Center of Laser Fusion, CAEP;State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology;
  • 关键词:准等熵压缩 ; 特征线 ; 高压物理 ; 整形激光
  • 英文关键词:quasi-isentropic compression;;characteristics;;high pressure physics;;temporal-shaped laser
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国工程物理研究院激光聚变研究中心;西北核技术研究所激光与物质相互作用国家重点实验室;
  • 出版日期:2018-01-30 13:15
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家自然科学基金(批准号:11475154,11305156);; 科学挑战专题(批准号:TZ2016001);; 激光与物质相互作用国家重点实验室基金(批准号:SKLLIM1606)资助的课题~~
  • 语种:中文;
  • 页:WLXB201804018
  • 页数:10
  • CN:04
  • ISSN:11-1958/O4
  • 分类号:172-181
摘要
整形激光驱动准等熵压缩是高效的物质动态压缩方式,是开展材料高压压缩特性研究的重要手段.本文系统介绍了近年来基于神光III原型激光装置开展的整形激光直接驱动准等熵压缩研究工作:创立了凝聚态物质的准等熵压缩理论模型,改进了实验设计方法和数据处理方法,掌握了制靶工艺,开展了激光加载实验并在多种靶型中实现了数百GPa的准等熵压缩.实验获取的参数范围超过传统加载方式,数据质量达到国际先进水平.
        The equation of state for solid at extreme pressure and relatively low temperature is an important topic in the study of astrophysics and fundamental physics of condensed matter. Direct laser-driven quasi-isentropic compression is a powerful method to achieve such extreme states which have been developed in recent years. A lot of researches have been done in Research Center of Laser Fusion in China since 2012, which are introduced in this article. The researches include an analytical isentropic compression model, a developed characteristic method, techniques for target manufacture,and experiments performed on SHENGUANG III prototype laser facility. The analytical isentropic compression model for condensed matter is obtained based on hydrodynamic equations and a Murnaghan-form state equation. Using the analytical model, important parameters, such as maximum shockless region width, material properties, pressure pulse profile, and pressure pulse duration can be properly allocated or chosen, which is convenient for experimental estimation and design. The characteristic method is developed based on a Murnaghan-form isentropic equation and characteristics, which can be used for experimental design, simulation, and experimental data processing. Based on the above researches, several rounds of experiments have been performed to obtain better isentropic effect by upgrading the target configurations. Five kinds of target configurations have been used up to now, which are three-step aluminum target, CH-coated planar aluminum target, CH-coated three-step aluminum target, planar aluminum target with Au blocking layer, and three-step aluminum target with Au blocking layer. The rear surface of three-step aluminum target is found to be destroyed when the loading pressure rises up to 194 GPa, and weak shock appears in CH-coated planar aluminum target and CH-coated three-step aluminum target. Besides, velocity interferometer system for any reflector(VISAR) fingers are found to decrease when the pressure rises up to about 400 GPa and disappears at 645 GPa. By reducing laser intensity, the whole interface velocities on three steps are obtained in the CH-coated three-step aluminum target and a stress-density curve is calculated. In order to eliminate the weak shock, the target configurations are upgraded by changing the ablation layer and putting a gold blocking layer after it. The experimental results show that the weak shock is eliminated and much clearer VISAR fingers are obtained when pressure rises to as high as 570 GPa.
引文
[1]Smith R F,Eggert J H,Jeanloz R,Duffy T S,Braun D G,Patterson J R,Rudd R E,Biener J,Lazicki A E,Hamza A V,Wang J,Braun T,Benedict L X,Celliers P M,Collins G W 2014 Nature 511 330
    [2]Laio A,Bernard S,Chiarotti G,Scandolo S,Tosatti E2000 Science 287 1027
    [3]Remington B,Drake R P,Ryutov D D 2006 Rev.Mod.Phys.78 755
    [4]Bradley D K,Eggert J H,Smith R F,Prisbrey S T,Hicks D G,Braun D G,Biener J,Hamza A,Rudd R E,Collins G 2009 Phys.Rev.Lett.102 075503
    [5]Guillot T 1999 Science 286 72
    [6]Lindl J 1995 Phys.Plasmas 2 3933
    [7]Davis J P 2006 J.Appl.Phys.99 103512
    [8]Reisman D B,Wolfer W G,Elsholz A,Furnish M D 2003J.Appl.Phys.93 8952
    [9]Baer M R,Hall C A,Gustavsen R L,Hooks D E,Sheffield S A 2007 J.Appl.Phys.101 034906
    [10]Ray A,Menon S V G 2009 J.Appl.Phys.105 064501
    [11]Hawke R S,Duerre D E,Huebel J G,Keeler R N,Wallace W C 1978 J.Appl.Phys.49 3298
    [12]Lorenz K T,Edwards M J,Jankowski A F,Pollaine S M,Smith R F,Remington B A 2006 High Energy Density Physics 2 113
    [13]Edwards J,Lorenz K T,Remington B A,Pollaine S,Colvin J,Braun D,Lasinski B F,Reisman D,Mc Naney J M,Greenough J A,Wallace R,Louis H,Kalantar D2004 Phys.Rev.Lett.92 075002
    [14]Smith R F,Pollaine S M,Moon S J,Lorenz K T,Celliers P M,Eggert J H,Park H S,Collins G W 2007 Phys.Plasma 14 057105
    [15]Smith R F,Eggert J H,Rudd R E,Swift D C,Bolme CA,Collins G W 2011 J.Appl.Phys.11 0123515
    [16]Shu H,Fu S Z,Huang X G,Ye J J,Zhou H Z,Xie ZY,Long T 2012 Acta Phys.Sin.61 114102(in Chinese)[舒桦,傅思祖,黄秀光,叶君建,周华珍,谢志勇,龙滔2012物理学报61 114102]
    [17]Xue Q,Wang Z,Jiang S,Ye X,Liu J 2014 AIP Adv.4057127
    [18]Xue Q,Jiang S,Wang Z,Wang F,Hu Y,Ding Y 2016Physica B 495 64
    [19]Xue Q X,Jiang S E,Wang Z B,Zhang H,Ye X S,Zhang Y S 2014 Nuclear Fusion and Plasma Physics 34 17(in Chinese)[薛全喜,江少恩,王哲斌,章欢,叶锡生,张永生2014核聚变与等离子体物理34 17]
    [20]Xue Q X,Jiang S E,Wang Z B,Zhang H,Ye X S,Zhang Y S 2013 High Power Laser and Particle Beam 25 2891(in Chinese)[薛全喜,江少恩,王哲斌,章欢,叶锡生,张永生2013强激光与粒子束25 2891]
    [21]Xue Q,Wang Z,Jiang S,Wang F,Ye X,Liu J 2014Phys.Plasmas 21 072709
    [22]Zhang Z Y,Zhao Y,Xue Q X,Wang F,Yang J M 2015Acta Phys.Sin.64 205202(in Chinese)[张志宇,赵阳,薛全喜,王峰,杨家敏2015物理学报64 205202]
    [23]Wang F,Peng X S,Xue Q X,Xu T,Wei H Y 2015 Acta Phys.Sin.64 085202(in Chinese)[王峰,彭晓世,薛全喜,徐涛,魏惠月2015物理学报64 085202]
    [24]Hawke R S,Duerre D E,Huebel J G,Klapper H,Steinberg D J,Keeler R N 1972 J.Appl.Phys.43 2734
    [25]Nuckolls J,Wood L,Thiessen A,Zimmerman G 1972Nature 239 139
    [26]Atzeni S,Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion(London:Oxford University Press)p148
    [27]Davis J P,Deeney C,Knudson M D,Raymond W L,Timothy D P,David E B 2005 Phys.Plasmas 12 056310
    [28]Swift D C,Kraus R G,Loomis E N,Hicks D G,Mc Naney J M,Johnson R P 2008 Phys.Rev.E 78 066115
    [29]Li W 2003 One-Dimensional Nonsteady Flow and Shock Waves(Beijing:Defense Industry Press)pp36-55(in Chinese)[李维新2003一维不定常流与冲击波(北京:国防工业出版社)第36-55页]
    [30]Ramis R,Schmaltz R,Meyer-ter-Vehn J 1988 Comp.Phys.Commun.49 475
    [31]Seaman L 1974 J.Appl.Phys.45 4303
    [32]Rothman S D,Davis J P,Maw J,Robinson C M,Parker K,Palmer J 2005 J.Phys.D:Appl.Phys.38 733
    [33]Hayes D 2001 Bakward Intergration of the Equations of Motion to Correct for Free Surface Perturbations(Sandia National Laboratories Report)SAND2001-1440
    [34]Rothman S D,Maw J 2006 J.Phys.IV France 134 745
    [35]Reisman D B,Wolfer W G,Elsholz A,Furnish M D 2003J.Appl.Phys.93 8952
    [36]Davis J P 2006 J.Appl.Phys.99 103512
    [37]Kerley G I 1987 Int.J.Impact Eng.5 441
    [38]Smith R F,Eggert J H,Jankowski A,Celliers P M,Edwards M J,Gupta Y M,Asay J R,Collins G W 2007Phys.Rev.Lett.98 065701

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700