黏性颗粒团聚机理及流化特性研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on agglomeration mechanisms and fluidization behavior of cohesive particles
  • 作者:祁晗璐 ; 王嘉 ; 顾雪萍 ; 冯连芳
  • 英文作者:Hanlu QI;Jiajun WANG;Xueping GU;Lianfang FENG;State Key Lab of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University;
  • 关键词:颗粒流 ; 黏性力 ; 团聚机理 ; 流态化 ; 离散单元法
  • 英文关键词:granular flow;;cohesive force;;agglomeration mechanisms;;fluidization;;discrete element method
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:浙江大学化学工程与生物工程学系化学工程联合国家重点实验室;
  • 出版日期:2018-08-08 13:27
  • 出版单位:过程工程学报
  • 年:2019
  • 期:v.19
  • 基金:国家重点研发计划资助项目(编号:2017YFB0307702);; 国家自然科学基金资助项目(编号:21276222);; 中央高校基本科研业务费专项资金资助
  • 语种:中文;
  • 页:HGYJ201901008
  • 页数:9
  • CN:01
  • ISSN:11-4541/TQ
  • 分类号:62-70
摘要
黏性力的存在导致黏性颗粒在流化过程中易发生团聚,干扰正常的流态化。近年来,黏性颗粒流的研究重心逐渐转移到本征的团聚机理和流化特性。本工作综述了4种主要黏性力的力学模型、团聚判据及流态化实验与模拟研究进展,从力、运动及动力学的角度阐述了黏性力作用机制和黏性颗粒流化特性。分析表明,在颗粒尺度上,4种黏性力发展程度差异较大,黏性力动力学模型和团聚过程机理将成为未来研究的主要方向。在反应器尺度上,耦合黏性力模型的离散单元法模拟将继续作为重要的研究方法,其中,机理模型和计算能力是后续模拟中需要突破的重点。
        Cohesive particles tend to bond together during fluidization due to the inter-particle force, which breaks down the normal fluidization and seriously affects factory production. In recent years, the research focus of cohesive granular flow has gradually transferred to the intrinsic agglomeration mechanisms and fluidization characteristics simulation study from the black-box-like experiments before. Taking studied scale as the cut-in point, the mechanical model, agglomeration criterion as well as fluidization experiment and simulation study of four kinds of cohesive forces(Van der Waals force, electrostatic force, solid bridge force and liquid bridge force) were reviewed on the particle scale and reactor scale. The functionary mechanisms of cohesive force and the fluidization behavior of cohesive particles were analyzed from the aspects of force, motion and kinetics. While the development of the four kinds of cohesive forces are in different stage according to the agglomeration mechanisms studies, the dynamic model as well as agglomeration process mechanisms will become the major tendency in this field. On the reactor scale, the discrete element method simulation coupled with cohesive force models will remain to play an important role in fluidization study. For the significant influence on simulation performance caused by the accuracy of the model like cohesive force model and drag model as well as the trends in three-dimensional simulation, the mechanical model and calculation ability will be two challenges in the future simulation research.
引文
[1]Kennedy D,Norman C.What don't we know?[J].Science,2005,309(5731):75.
    [2]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009:言1.Sun Q C,Wang G Q.Introduction to the mechanics of particulate matter[M].Beijing:Science Press,2009:preface 1.
    [3]陆夕云,林建忠.能否发展关于湍流动力学和颗粒材料运动学的综合理论?[J].科学通报,2017,62(11):1115-1118.Lu X Y,Lin J Z.Can we develop a general theory of the dynamics of turbulent flows and motion of granular materials?[J].Chinese Science Bulletin,2017,62(11):1115-1118.
    [4]Zhou Y F,Shi Q,Huang Z L,et al.Particle agglomeration and control of gas-solid fluidized bed reactor with liquid bridge and solid bridge coupling actions[J].Chemical Engineering Journal,2017,330:840-851.
    [5]张永俊,王嘉骏,顾雪萍,等.黏性颗粒流态化的气固流动模型研究进展[J].过程工程学报,2014,14(3):535-540.Zhang Y J,Wang J J,Gu X P,et al.Research progress in numerical models on gas-solid fluidization of cohesive particles[J].The Chinese Journal of Process Engineering,2014,14(3):535-540.
    [6]Zhou T,Li H Z.Force balance modelling for agglomerating fluidization of cohesive particles[J].Powder Technology,2000,111(1):60-65.
    [7]李娜,王嘉骏,冯连芳,等.黏结性粗颗粒流动与流态化的研究进展[J].化工进展,2014,33(2):298-303.Li N,Wang J J,Feng L F,et al.Research progress of granular flow and fluidization behavior of coarse cohesive particles[J].Chemical Industry&Engineering Progress,2014,33(2):298-303.
    [8]Geldart D.Types of gas fluidization[J].Powder Technology,1973,7(5):285-292.
    [9]马吉亮.接触式粘性力对颗粒流态化的影响机理研究[D].南京:东南大学,2016:1-11.Ma J L.Investigation on fluidization dynamics of particles with contact cohesive force[D].Nanjing:Southeast University,2016:1-11.
    [10]Liang X Z,Duan H,Zhou T,et al.Fluidization behavior of binary mixtures of nanoparticles in vibro-fluidized bed[J].Advanced Powder Technology,2014,25(1):236-243.
    [11]王希.粘性大颗粒流态化过程流化粘结特性研究[D].北京:清华大学,2011:1-22.Wang X.Study on fluidization and bond characteristics of coarse cohesive particles in fluidized process[D].Beijing:Tsinghua University,2011:1-22.
    [12]Lamarche C Q,Leadley S,Liu P,et al.Method of quantifying surface roughness for accurate adhesive force predictions[J].Chemical Engineering Science,2016,158:140-153.
    [13]Liu P Y,Lamarche C Q,Kellogg K M,et al.Cohesive grains:bridging microlevel measurements to macrolevel flow behavior via surface roughness[J].AIChE Journal,2016,62(10):3529-3537.
    [14]Lu H,Zhong J,Cao G P,et al.Gravitational discharge of fine dry powders with asperities from a conical hopper[J].AIChE Journal,2017,64(2):427-436.
    [15]Liu G Q,Li S Q,Yao Q.A JKR-based dynamic model for the impact of micro-particle with a flat surface[J].Powder Technology,2011,207(1/3):215-223.
    [16]Chaouki J,Chavarie C,Klvana D,et al.Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels[J].Powder Technology,1985,43(2):117-125.
    [17]Tamadondar M R,Zarghami R,Boutou K,et al.Size of nanoparticle agglomerates in fluidization[J].Canadian Journal of Chemical Engineering,2016,94(3):476-484.
    [18]Iwadate Y,Horio M.Prediction of agglomerate sizes in bubbling fluidized beds of group C powders[J].Powder Technology,1998,100(2):223-236.
    [19]周勇,高凯歌,李海念,等.超细颗粒流化聚团尺寸的预测模型[J].中国粉体技术,2017,(5):7-12.Zhou Y,Gao K G,Li H N,et al.Models for estimating agglomerate size of ultrafine particles in fluidized beds[J].China Powder Science and Technology,2017,(5):7-12.
    [20]Lauga C,Chaouki J,Klvana D,et al.Improvement of the fluidizability of Ni/SiO2 aerogels by reducing interparticle forces[J].Powder Technology,1991,65(S1/3):461-468.
    [21]Valverde J M,Castellanos A.Fluidization of nanoparticles:a simple equation for estimating the size of agglomerates[J].Chemical Engineering Journal,2008,140(1):296-304.
    [22]杨遥.静电流化床中流体力学特性的调控机制研究[D].杭州:浙江大学,2016:1-38.Yang Y.Regulation of hydrodynamics in the fluidized bed with electrostatic[D].Hangzhou:Zhejiang University,2016:1-38.
    [23]Fotovat F,Bi X T,Grace J R.Electrostatics in gas-solid fluidized beds:a review[J].Chemical Engineering Science,2017,173:303-334.
    [24]柳冠青.范德华力和静电力下的细颗粒离散动力学研究[D].北京:清华大学,2011:1-14.Liu G Q.Discrete element methods of fine particles dynamics in presence of Van der Waals and electrostatic forces[D].Beijing:Tsinghua University,2011:1-14.
    [25]Wang F,Wang J D,Yang Y R.Distribution of electrostatic potential in a gas-solid fluidized bed and measurement of bed level[J].Industrial and Engineering Chemistry Research,2008,47(23):9517-9526.
    [26]Song D,Mehrani P.Mechanism of particle build-up on gas-solid fluidization column wall due to electrostatic charge generation[J].Powder Technology,2017,316:166-170.
    [27]Song D,Salama F,Matta J,et al.Implementation of faraday cup electrostatic charge measurement technique in high-pressure gas-solid fluidized beds at pilot-scale[J].Powder Technology,2016,290:21-26.
    [28]Liu G,Marshall J S,Li S Q,et al.Discrete-element method for particle capture by a body in an electrostatic field[J].International Journal for Numerical Methods in Engineering,2010,84(13):1589-1612.
    [29]Dong K Z,Zhang Q,Huang Z L,et al.Experimental investigation of electrostatic effect on bubble behaviors in gas-solid fluidized bed[J].AIChE Journal,2015,61(4):1160-1171.
    [30]Dong K Z,Zhang Q,Huang Z L,et al.Experimental investigation of electrostatic effect on particle motions in gas-solid fluidized beds[J].AIChE Journal,2015,61(11):3628-3638.
    [31]Mikami T,Kamiya H,Horio M.The mechanism of defluidization of iron particles in a fluidized bed[J].Powder Technology,1996,89(3):231-238.
    [32]郭庆杰,王昕,岳光溪,等.高温流化床的流化特性及结焦非流化行为[J].燃烧科学与技术,2002,8(2):130-134.Guo Q J,Wang X,Yue G X,et al.Flow characteristics and defluidization behavior with agglomeration at high temperature fluidized bed[J].Journal of Combustion Science and Technology,2002,8(2):130-134.
    [33]赵硕,栾超,由长福.温度、接触压力与时间对燃煤飞灰固体桥力的影响规律[J].化工学报,2016,67(6):2542-2547.Zhao S,Luan C,You C F.Effect of temperature,contact pressure and duration on solid-bridge force of coal ash[J].CIESC Journal,2016,67(6):2542-2547.
    [34]Ennis B J,Li J,Tardos G I,et al.The influence of viscosity on the strength of an axially strained pendular liquid bridge[J].Chemical Engineering Science,1990,45(10):3071-3088.
    [35]Mikami T,Kamiya H,Horio M.Numerical simulation of cohesive powder behavior in a fluidized bed[J].Chemical Engineering Science,1998,53(10):1927-1940.
    [36]Shi D,Mccarthy J J.Numerical simulation of liquid transfer between particles[J].Powder Technology,2008,184(1):64-75.
    [37]Girardi M,Radl S,Sundaresan S.Simulating wet gas-solid fluidized beds using coarse-grid CFD-DEM[J].Chemical Engineering Science,2016,144:224-238.
    [38]韩笑.气固流化床中持液颗粒的流化特性及反应器模型研究[D].杭州:浙江大学,2013:34-49.Han X.Research on fluidization characteristics of liquid-containing particles and reactor modeling in gas-solid fluidized bed[D].Hangzhou:Zhejiang University,2013:34-49.
    [39]Yakov I,Rabinovich Madhavan S,Esayanur Brij M,et al.Capillary forces between two spheres with a fixed volume liquid bridge:theory and experiment[J].Langmuir,2005,21(24):10992-10997.
    [40]Boyce C M,Ozel A,Kolehmainen J,et al.Analysis of the effect of small amounts of liquid on gas-solid fluidization using CFD-DEMsimulations[J].AIChE Journal,2017,63(12):5290-5302.
    [41]Wang T Y,He Y R,Tang T Q,et al.Experimental and numerical study on a bubbling fluidized bed with wet particles[J].AIChEJournal,2016,62(6):1970-1985.
    [42]Wu M,Radl S,Khinast J G.A model to predict liquid bridge formation between wet particles based on direct numerical simulations[J].AIChE Journal,2016,62(6):1877-1897.
    [43]Askarishahi M,Salehi M S,Radl S.Full physics simulations of spray-particle interaction in a bubbling fluid1ized bed[J].AIChEJournal,2017,63(7):2569-2587.
    [44]Weber M W,Hrenya C M.Square-well model for cohesion in fluidized beds[J].Chemical Engineering Science,2006,61(14):4511-4527.
    [45]Ennis B J,Tardos G,Pfeffer R.A microlevel-based characterization of granulation phenomena[J].Powder Technology,1991,65(1/3):257-272.
    [46]Boyce C M,Ozel A,Kolehmainen J,et al.Growth and breakup of a wet agglomerate in a dry gas-solid fluidized bed[J].AIChE Journal,2017,63(7):2520-2527.
    [47]Shao J H,Guo Z C,Tang H Q.Influence of temperature on sticking behavior of iron powder in fluidized bed[J].ISIJ International,2011,51(8):1290-1295.
    [48]Ge W,Wang W,Yang N,et al.Meso-scale oriented simulation towards virtual process engineering(VPE)-the EMMS paradigm[J].Chemical Engineering Science,2011,66(19):4426-4458.
    [49]Li J,Kong J,He S Y,et al.Self-agglomeration mechanism of iron nanoparticles in a fluidized bed[J].Chemical Engineering Science,2017,177:455-463.
    [50]Zi C,Lungu M,Huang Z L,et al.Investigation of unstable solids circulation behavior in a circulating fluidized bed with sweeping bend return using pressure frequency analysis[J].Powder Technology,2016,294:159-167.
    [51]Zhou Y F,Yang L,Lu Y J,et al.Flow regime identification in gas-solid two-phase fluidization via acoustic emission technique[J].Chemical Engineering Journal,2017,334:1484-1492.
    [52]Yang Y,Huang Z L,Zhang W B,et al.Effects of agglomerates on electrostatic behaviors in gas-solid fluidized beds[J].Powder Technology,2016,287:139-151.
    [53]Zhang Q,Dong K Z,Zhou Y F,et al.A comparative study of electrostatic current and pressure signals in a MSFC gas-solid fluidized bed[J].Powder Technology,2016,287:292-300.
    [54]Yang Y,Zhang Q,Zi C,et al.Monitoring of particle motions in gassolid fluidized beds by electrostatic sensors[J].Powder Technology,2017,308:461-471.
    [55]Penn A,Tsuji T,Brunner D O,et al.Real-time probing of granular dynamics with magnetic resonance[J].Science Advances,2017,3(9):e1701879.
    [56]Yang Y,Zi C,Huang Z L,et al.CFD-DEM investigation of particle elutriation with electrostatic effects in gas-solid fluidized beds[J].Powder Technology,2016,308:422-433.
    [57]Kolehmainen J,Ozel A,Boyce C M,et al.A hybrid approach to computing electrostatic forces in fluidized beds of charged particles[J].AIChE Journal,2016,62(7):2282-2295.
    [58]Liu D Y,Van Wachem B G M,Mudde R F,et al.An adhesive CFD-DEM model for simulating nanoparticle agglomerate fluidization[J].AIChE Journal,2016,62(7):2259-2270.
    [59]Gan J Q,Zhou Z Y,Yu A B.CFD-DEM modelling of gas fluidization of fine ellipsoidal particles[J].AIChE Journal,2016,62(1):62-77.
    [60]Wu M Q,Khinast J G,Radl S.The effect of liquid bridge model details on the dynamics of wet fluidized beds[J].AIChE Journal,2018,64:437-456.
    [61]郑会晓.粘性大颗粒流态化研究[D].北京:清华大学,2008:58-80.Zheng H X.The fluidization of coarse cohesive particles[D].Beijing:Tsinghua University,2008:58-80.
    [62]Galvin J E,Benyahia S.The effect of cohesive forces on the fluidization of aeratable powders[J].AIChE Journal,2014,60(2):473-484.
    [63]Deng X L,DavéR N.Breakage of fractal agglomerates[J].Chemical Engineering Science,2017,161:117-126.
    [64]Wang W,Li J H.Simulation of gas-solid two-phase flow by a multiscale CFD approach of the EMMS model to the sub-grid level[J].Chemical Engineering Science,2007,62(1):208-231.
    [65]周池楼,赵永志.离散单元法及其在流态化领域的应用[J].化工学报,2014,65(7):2520-2534.Zhou C L,Zhao Y Z.Discrete element method and its applications in fluidization[J].CIESC Journal,2014,65(7):2520-2534.
    [66]Feng M Y,Li F,Wang W,et al.Parametric study for MP-PICsimulation of bubbling fluidized beds with geldart a particles[J].Powder Technology,2018,328:215-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700