microRNA-181b对心血管疾病的调控作用及机制的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research advances on the regulation and mechanism of microRNA-181b on cardiovascular diseases
  • 作者:祁缘 ; 荆黎
  • 英文作者:Qi Yuan;Jing Li;School of Basic Medical Sciences,Capital Medical University;School of Public Health,Capital Medical University;
  • 关键词:microRNA-181b ; 心血管疾病 ; 作用机制
  • 英文关键词:microRNA-181b;;cardiovascular disease;;mechanism of action
  • 中文刊名:SDYD
  • 英文刊名:Journal of Capital Medical University
  • 机构:首都医科大学基础医学院;首都医科大学公共卫生学院;
  • 出版日期:2019-06-05 13:11
  • 出版单位:首都医科大学学报
  • 年:2019
  • 期:v.40
  • 基金:首都医科大学科研培育基金项目(17ZR19)~~
  • 语种:中文;
  • 页:SDYD201903016
  • 页数:6
  • CN:03
  • ISSN:11-3662/R
  • 分类号:80-85
摘要
心血管疾病是当前发病率和病死率最高的疾病之一。microRNA-181b(miR-181b)在心血管疾病的发生和发展过程中发挥了重要的作用。大量研究表明,miR-181b可通过调控心血管组织中的相关靶基因进而调节细胞因子、蛋白酶以及受体的表达,从而参与调控心血管系统的生理及病理状态。在高血压、动脉粥样硬化、动脉瓣膜钙化、心肌纤维化、心肌肥厚以及心肌炎等心血管疾病中发挥着重要的调控作用。本文拟就相关的研究进展对miR-181b在心血管疾病中的作用及机制进行综述。
        Cardiovascular disease is one of the diseases with the highest morbidity and mortality. Numerous studies have shown that microRNA181 b( miR-181 b) can regulate the physiological and pathological state of the cardiovascular system by regulating the relevant target genes in cardiovascular tissues and regulating the expression of cytokines,proteases and receptors. It plays an important regulatory role in cardiovascular diseases such as hypertension,atherosclerosis,arterial valve calcification,myocardial fibrosis,cardiac hypertrophy and myocarditis. This article reviewed the research progresses on the role and mechanism of miR-181 b in cardiovascular disease.
引文
[1] Wang J,Chen T,Shan G. miR-148b regulates proliferation and differentiation of neural stem cells via Wnt/beta-Catenin signaling in rat ischemic stroke model[J]. Front Cell Neurosci,2017,11:329.
    [2] Xu X,Ge S,Jia R,et al. Hypoxia-induced miR-181b enhances angiogenesis of retinoblastoma cells by targeting PDCD10 and GATA6[J]. Oncol Rep, 2015, 33(6):2789-2796.
    [3] Hori D,Dunkerly-Eyring B,Nomura Y,et al. miR-181b regulates vascular stiffness age dependently in part by regulating TGF-beta signaling[J]. PLo S One, 2017, 12(3):e0174108.
    [4] Banzet S,Chennaoui M,Girard O,et al. Changes in circulating microRNAs levels with exercise modality[J]. J Appl Physiol(1985),2013,115(9):1237-1244.
    [5] Sun X,Icli B,Wara A K,et al. MicroRNA-181b regulates NF-kappa B-mediated vascular inflammation[J]. J Clin Invest,2012,122(6):1973-1990.
    [6] Zhou Y,Wu Q. Corin in natriuretic peptide processing and hypertension[J]. Curr Hypertens Rep,2014,16(2):415,448
    [7] Gao Z,Wang L,Wang J,et al. Molecular mechanism of miR-181b in heart disease due to pregnancy-induced hypertension syndrome[J]. Exp Ther Med,2017,14(4):2953-2959.
    [8] Petrovic N,Davidovic R,Jovanovic-Cupic S,et al. Changes in miR-221/222 levels in invasive and in situ carcinomas of the breast:differences in association with estrogen receptorand TIMP3 expression levels[J]. Mol Diagn Ther,2016,20(6):603-615.
    [9] Tomé-Canrneiro J,Larr'o sa M,Yáez-Gasc'on M J,et al.One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease[J]. Pharmacol Res,2013,72:69-82.
    [10] Wu M Y,Li C J,Hou M F,et al. New insights into the role of inflammation in the pathogenesis of atherosclerosis[J]. Int J Mol Sci,2017,18(10):pii:E2034.
    [11] Majesky M W. Vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol,2016,36(10):e82-e86.
    [12] Sun X,He S,Wara A K M,et al. Systemic delivery of microRNA-181b inhibits nuclear factor-kappaB activation,vascular inflammation,and atherosclerosis in apolipoprotein E-deficient mice[J]. Circ Res,2014,114(1):32-40.
    [13] Lin J,He S,Sun X,et al. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10[J]. FASEB J,2016,30(9):3216-3226.
    [14] Deng Y,Kong J. Urinary trypsin inhibitor reduced inflammation response induced by hyperlipidemia[J]. J Cardiovasc Pharmacol Ther,2015,20(6):572-578.
    [15] Frangogiannis N G,Smith C W,Entman M L. The inflammatory response in myocardial infarction[J]. Cardiovasc Res,2002,53(1):31-47.
    [16] Zhang Y,Wang F,Lan Y,et al. Roles of microRNA-146a and microRNA-181b in regulating the secretion of tumor necrosis factor-alpha and interleukin-1beta in silicon dioxide-induced NR8383 rat macrophages[J]. Mol Med Rep,2015,12(4):5587-5593.
    [17] Heinrich P C,Behrmann I,MullER-Newen G,et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway[J]. Biochem J,1998,334(Pt 2):297-314.
    [18] Andreasen S,Therkildsen M H,Grauslund M,et al. Activation of the interleukin-6/Janus kinase/STAT3 pathway in pleomorphic adenoma of the parotid gland[J]. APMIS,2015,123(8):706-715.
    [19] Cervigne N K,Reis P P,Machado J,et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma[J]. Hum Mol Genet,2009,18(24):4818-4829.
    [20] Iliopoulos D,Jaeger S A,Hirsch H A,et al. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer[J]. Mol Cell,2010,39(4):493-506.
    [21] Sun X,Lin J,Zhang Y,et al. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue[J]. Circ Res,2016,118(5):810-821.
    [22] Li X,Cao G. Potential role of microRNA-181b on atherosclerosis[J]. Zhonghua Xin Xue Guan Bing Za Zhi,2015,43(6):516-520.
    [23] Li T J,Chen Y L,Gua C J,et al. MicroRNA 181b promotes vascular smooth muscle cells proliferation through activation of PI3K and MAPK pathways[J]. Int J Clin Exp Pathol,2015,8(9):10375-10384.
    [24] Di Gregoli K,Mohamad Anuar N N,Bianco R,et al. MicroRNA-181b controls atherosclerosis and aneurysms through regulation of TIMP-3 and elastin[J]. Circ Res,2017,120(1):49-65.
    [25] Hulsmans M,Holvoet P. The vicious circle between oxidative stress and inflammation in atherosclerosis[J]. J Cell Mol Med,2010,14(1-2):70-78.
    [26] Hulsmans M,Sinnaeve P,Van der Schueren B,et al. Decreased miR-181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease[J]. J Clin Endocrinol Metab,2012,97(7):E1213-E1218.
    [27] Guo F,Tang C,Li Y,et al. The interplay of LncRNA ANRIL and miR-181b on the inflammation-relevant coronary artery disease through mediating NF-kappaB signalling pathway[J]. J Cell Mol Med,2018,22(10):5062-5075.
    [28] Carlos T M,Harlan J M. Leukocyte-endothelial adhesion molecules[J]. Blood,1994,84(7):2068-2101.
    [29] Mathieu P,Boulanger M C. Basic mechanisms of calcific aortic valve disease[J]. Can J Cardiol,2014,30(9):982-993.
    [30] Heath J M,Fernandez Esmerats J,Khambouneheuang L,et al. Mechanosensitive microRNA-181b regulates aortic valve endothelial matrix degradation by targeting TIMP3[J]. Cardiovasc Eng Technol,2018,9(2):141-150.
    [31] Perrotta I,Sciangula A,Aquila S,et al. Matrix metalloproteinase-9 expression in calcified human aortic valves:a histopathologic, immunohistochemical, and ultrastructural study[J]. Appl Immunohistochem Mol Morphol,2016,24(2):128-137.
    [32] Jiang X,Ning Q,Wang J. AngiotensinⅡinduced differentially expressed microRNAs in adult rat cardiac fibroblasts[J]. J Physiol Sci,2013,63(1):31-38.
    [33] Copier C U,Le'on L,Fernández M,et al. Circulating miR-19b and miR-181b are potential biomarkers for diabetic cardiomyopathy[J]. Sci Rep,2017,7(1):13514.
    [34] Dobaczewski M,Chen W,Frangogiannis N G. Transforming growth factor(TGF)-beta signaling in cardiac remodeling[J]. J Mol Cell Cardiol,2011,51(4):600-606.
    [35] Muslin A J. MAPK signalling in cardiovascular health and disease:molecular mechanisms and therapeutic targets[J].Clin Sci(Lond),2008,115(7):203-218.
    [36] Oka T,Akazawa H,Naito A T,et al. Angiogenesis and cardiac hypertrophy:maintenance of cardiac function and causative roles in heart failure[J]. Circ Res,2014,114(3):565-571.
    [37] Zhong W,Yang J,Cao Q,et al. Association between miR-181b and PKG 1 in myocardial hypertrophy and its clinical implications[J]. Exp Ther Med,2015,10(3):857-862.
    [38] Vandael D H,Mahapatra S,Calorio C,et al. Cav1. 3 and Cav1. 2 channels of adrenal chromaffin cells:emerging views on c AMP/c GMP-mediated phosphorylation and role in pacemaking[J]. Biochim Biophys Acta,2013,1828(7):1608-1618.
    [39] Chen T S,Battsengel S,Kuo C H,et al. Stem cells rescue cardiomyopathy induced by P. gingivalis-LPS via miR-181b[J]. J Cell Physiol,2018,233(8):5869-5876.
    [40] Mohseni Z,Spaanderman M E A,Oben J,et al. Cardiac remodeling and pre-eclampsia:an overview of microRNA expression patterns[J]. Ultrasound Obstet Gynecol,2018,52(3):310-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700