多相纤维增强酚醛树脂低密度烧蚀防热复合材料高温压缩性能及损伤机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High temperature compressive property and damage mechanism of low density multiphase fiber reinforced phenolic resin ablative thermal protective composite
  • 作者:王国林 ; 金华 ; 孟松鹤 ; 程广益 ; 胡兆财 ; 韩国凯
  • 英文作者:WANG Guolin;JIN Hua;MENG Songhe;CHENG Guangyi;HU Zhaocai;HAN Guokai;Science and Technology on Advanced Composites in Special Environments Key Laboratory,Harbin Institute of Technology;China Aerodynamics Research and Development Center;
  • 关键词:低密度烧蚀防热材料 ; 高温压缩性能 ; 热解 ; 增韧机制 ; 微观组织
  • 英文关键词:low-density ablative thermal protective composite;;high-temperature compressive properties;;pyrolysis;;toughening mechanism;;microstructure
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:哈尔滨工业大学特种环境复合材料技术国防科技重点实验室;中国空气动力研究与发展中心;
  • 出版日期:2018-07-27 15:18
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金青年科学基金(11502058);; 黑龙江省博士后启动基金(LBH-Q1605);; 中央高校基本科研业务专项资金(HIT.NSRIF.201823)
  • 语种:中文;
  • 页:FUHE201901016
  • 页数:6
  • CN:01
  • ISSN:11-1801/TB
  • 分类号:139-144
摘要
低密度烧蚀防热材料是航天飞行器热防护系统的关键候选材料,其高温力学性能是热防护结构在气动热载荷下结构完整性的关键。本文针对多相纤维增强酚醛树脂低密度烧蚀防热复合材料开展高温压缩性能实验,获得了其压缩强度随温度的变化规律,结合热重、SEM分析了力载荷、热解及氧化反应对压缩强度的影响,揭示了软相碳层弥合和纤维脱黏、拔出两种韧化机制,为多相纤维增强酚醛树脂低密度烧蚀防热复合材料在热防护系统的工程应用提供实验数据支撑。
        Low-density ablative thermal protection material is a key candidate material for spacecraft thermal protection systems.Its excellent high-temperature mechanical properties are the key to structural integrity of thermal protection structures under aerodynamic thermal loading.In this paper,the low-density ablation thermal protection composite of multiphase fibers reinforced phenolic resin composite was used to carry out compression experiments at high temperatures to obtain the variation law of the compressive strength with temperature.The influence of force load,pyrolysis and oxidation reaction on compressive strength was analysised by thermogravity and SEM.Two kinds toughening mechanisms of soft phase carbon layer bridging and fiber debonding and pull-out are revealed,which provides experimental data support for the application of the composite in thermal protection systems.
引文
[1]梁馨,罗丽娟,谭珏,等.美国空间探测器热防护材料发展现状及趋势[J].材料导报,2016,30(s1):551-557.LIANG X,LUO L J,TAN J,et al.Current state and trend of thermal protection material for space exploration in America[J]. Material Review,2016,30(s1):551-557(in Chinese).
    [2]姜贵庆,刘连元.高速气流传热与烧蚀热防护[M].北京:国防工业出版社,2003.JIANG G Q,LIU L Y.Heat transfer of hypersonic gas and ablation thermal protection[M].Beijing:National Defense Industry Press,2003(in Chinese).
    [3]杨雷,张柏楠,郭斌,等.新一代多用途载人飞船概念研究[J].航空学报,2015,36(3):703-713.YANG L,ZHANG B N,GUO B,et al.Concept definition of new generation multi-purpose manned spacecraft[J].Acta Aeronautica et Astronautica Sinica,2015,36(3):703-713(in Chinese).
    [4]薛华飞,姚秀荣,程海明,等.热防护用轻质烧蚀材料现状与发展[J].哈尔滨理工大学学报,2017,22(1):123-128.XUE H F,YAO X R,CHENG H M,et al.Current situation development of lightweight ablation materials for thermal protection[J].Journal of Harbin University of Science and Technology,2017,22(1):123-128(in Chinese).
    [5] BARTLETT E P,ANDERSON L W,CURRY D M.An evaluation of ablation mechanisms for the Apollo heat shield material[J].Journal of Spacecraft and Rockets,1971,8(5):463-469.
    [6] ERB R B,GREENSHIELDS D H,CHAUVIN L T,et al.Apollo thermal-protection system development[J].Journal of Spacecraft and Rockets,1970,7(6):727-734.
    [7] JOHN K T.Overview of the Orion thermal protection system development,JSC-CN-20147[R].Barcelona:NASA,2010.
    [8]王春明,梁馨,孙宝岗,等.低密度烧蚀材料在神舟飞船上的应用[J].宇航材料工艺,2011,41(2):5-8.WANG C M,LIANG X,SUN B G,et al.Application of low density ablative material on shenzhou spacecraft[J].Aerospace Materials&Technology,2011,41(2):5-8(in Chinese).
    [9]党嘉立,顾兆栴.中国“神州号”载人飞船返回舱防热材料现状及展望[C]//第12届全国复合材料学术会议.天津:中国复合材料学会,2002.DANG J L,GU Z Z.Status&prospect of thermal protective material on China’s Shenzhou spacecraft[C]//12th National Conference on Composite Materials.Tianjin:Chinese Society for Multiple Materials,2002(in Chinese).
    [10] LAUB B,VENKATAPATHY E.Thermal protection system technology and facility needs for demanding future planetary missions[C]//Proceedings of the International Workshop Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science.Noordwijk:ESA Publications Division,2003.
    [11] WILLCOCKSON W H.Mars pathfinder heatshield design and flight experience[J].Journal of Spacecraft and Rockets,1999,36(3):374-379.
    [12] SZALAI C E,THOMA B L,LEE W J,et al.Mars exploration rover heatshield observation campaign[C]//42nd AIAA Thermophysics Conference.Honolulu:AIAA,2011.
    [13] TRAN H K.Development of lightweight ceramic ablators and arc-jet test results,NASA TM-108798[R].California:NASA Ames Research Center,1994.
    [14] TRAN H K,JOHNSON C E,RASKY D J,et al.Phenolic Impregnated carbon ablators(PICA)as thermal protection systems for discovery missions,NASA TM-110440 56[R].California:NASA Ames Research Center,1997.
    [15] WILLCOCKSON W H.Stardust sample return capsule design experience[J].Journal of Spacecraft and Rockets,1999,36(3):470-474.
    [16] STACKPOOLE M,SEPKA S,COZMUTA I,et al.Postflight evaluation of stardust sample return capsule forebody heatshield material[C]//46th AIAA Aerospace Sciences Meeting and Exhibit.Reno:AIAA,2008.
    [17] BECK R A S,DRIVER D M,WRIGHT M J,et al.Development of the Mars Science Laboratory Heatshield Thermal Protection System[J].Journal of Spacecraft and Rockets,2009,51(4):1139-1150.
    [18] NOWLIN S,THIMONS L.Surviving the heat:The application of phenolic impregnated carbon ablators[C]//University of Pittsburgh Swanson School of Engineering,2013.
    [19] AGRAWAL P,CHAVEZGARCIA J F,PHAM J.Fracture in phenolic impregnated carbon ablator[J].Journal of Spacecraft&Rockets,2013,50(4):735-741.
    [20] FELDMAN J D,ELLERBY D,STACKPOOLE M,et al.Development of 3Dwoven ablative thermal protection systems(TPS)for NASA spacecraft,ARC-E-DAA-TN27338[R].California:NASA Ames Research Center,2015.
    [21] VENKATAPATHY E,ELLERBY D,GAGE P,et al.Heat-shield for extreme entry environment technology(HEEET)development status[C]//13th International Planetary Probe Workshop.Maryland:2016.
    [22] MILOS F S,CHEN Y K,MAHZARI M.Arc-jet tests and thermal response analysis for dual-layer woven carbon phenolic[C]//47th AIAA Thermophysics Conference.Denver:AIAA,2017.
    [23] SHI S B,LIANG J,GU L X,et al.Degradation in compressive strength of silica/phenolic composites subjected to thermal and mechanical loading[J].Journal of Reinforced Plastics and Composites,2016,35(7):579-588.
    [24] SHI S B,GU L,LIANG J,et al.A mesomechanical model for predicting the degradation in stiffness of FRP composites subjected to combined thermal and mechanical loading[J].Materials&Design,2016,89:1079-1085.
    [25]中国国家标准化管理委员会.纤维增强塑料压缩性能试验方法:GB/T 1448—2005[S].北京:中国标准出版社,2005.Standardization Administration of the People’s Republic of China.Fiber-reinforced plastics composites:Determination of compressive properties:GB/T 1448—2005[S].Beijing:China Standards Press,2005(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700