基于法布里-珀罗干涉的微悬臂偏移检测系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Micro-cantilever Displacement Detection System Based on Fabry-Perot Interference
  • 作者:黄剑 ; 詹维纳 ; 陈杨黎 ; 卢景琦
  • 英文作者:HUANG Jian;ZHAN Wei-na;CHEN Yang-li;LU Jing-qi;Department of Physics,School of Science,Wuhan University of Technology;
  • 关键词:位移测量 ; 法布里-珀罗干涉仪 ; 原子力显微镜 ; 微悬臂 ; 强度解调
  • 英文关键词:Displacement measurement;;Fabry-Perot interferometer;;Atomic force microscope;;Micro-cantilever;;Intensity demodulation
  • 中文刊名:GZXB
  • 英文刊名:Acta Photonica Sinica
  • 机构:武汉理工大学理学院物理系;
  • 出版日期:2018-12-06 14:08
  • 出版单位:光子学报
  • 年:2018
  • 期:v.47
  • 基金:国家重大科学仪器设备开发项目(No.2013YQ160551)资助~~
  • 语种:中文;
  • 页:GZXB201812017
  • 页数:7
  • CN:12
  • ISSN:61-1235/O4
  • 分类号:115-121
摘要
提出了一种基于法布里-珀罗干涉的方法用于原子力显微镜微悬臂偏移量的检测.设计了一个球面反射镜与微悬臂组成的半球面布里-珀罗腔,并利用高单色性的激光器作为光源,激光光束在半球面布里-珀罗腔中多次反射并原路返回形成干涉.根据多光束干涉原理确定干涉光强与腔长之间的关系,利用强度解调的方法计算微悬臂的偏移量并反馈给原子力显微镜系统.最后根据该方案搭建一套微悬臂偏移检测系统,实验获得30nm的工作范围内99.9%的线性拟合度,微悬臂最小位移分辨力为0.26nm,实验结果和理论分析一致,证明了该系统的实用性.
        A method based on Fabry-Perot(F-P)interferometer is proposed to detect the displacement of the micro-cantilever of atomic force microscopy.A hemispherical F-P cavity composed of a spherical mirror and a micro-cantilever is designed.A single frequency laser is used as the light source.The laser beam is reflected multiple times in the hemispherical F-P cavity and returned to the original path to form an interference.According to the principle of multi-beam interference,the relationship between the interference intensity and the cavity length has been determined and the deflection of the micro-cantilever has been calculated by using the intensity demodulation method.Finally,a micro-cantilever displacement detection system has been built.The experiment obtained a linear fit of 99.9%in the working range of30 nm,and the minimum displacement resolution of the micro-cantilever was 0.26 nm.The experimental results are consistent with the theoretical analysis,which proves the practicability of the system.
引文
[1] HAMON L,PASTRE D,DUPAIGNE P,et al.High-resolution AFM imaging of single-stranded DNA-binding(SSB)protein--DNA complexes[J].Nucleic Acids Research,2007,35(8):e58.
    [2] GIESSIBLFF J.AFM′s path to atomic resolution[J].Materials Today,2005,8(5):32-41.
    [3] ZHU Jie,SUN Run-guang.Introduction to atomic force microscope and its manipulation[J].Life Science Instruments,2005,3(1):22-26朱杰,孙润广.原子力显微镜的基本原理及其方法学研究[J].生命科学仪器,2005,3(1):22-26.
    [4] RUGAR D,MAMIN H J,GUETHNER P.Improved fiber-optic interferometer for atomic force microscopy[J].Applied Physics Letters,1989,55(25):2588-2590.
    [5] BINNING G,QUATE C F,GERBER C.Atomic force microscope[J].Physical Review Letters,1986,56(9):930-933.
    [6] GODDENHENRICH T,LEMKE H,HARTMANN U,et al.Force microscope with capacitive displacement detection[J].Journal of Vacuum Science&Technology A Vacuum Surfaces&Films,1998,8(1):383-387.
    [7] MEYER G,AMER N M.Novel optical approach to atomic force microscopy[J].Applied Physics Letters,1988,53(12):1045-1047.
    [8] ALEXANDER S,HELLENMANS L,Marti O,et al.An atomic-resolution atomic-force microscope implemented using an optical lever[J].Journal of Applied Physics,1989,65(1):164-167.
    [9] MARTIN Y,WILLIAMS C C,WICKREMASINGHE H K.Atomic force microscope-force mapping and profiling on a sub 100-scale[J].Journal of Applied Physics,1987,61(10):4723-4729.
    [10] XIAO-HUI L I,CHENG D.Design and research on spherical plate capacitive displacement sensor[J].Instrument Technique&Sensor,2018.
    [11] ANDREEV N V.Atomic force microscopy with interferometric method for detection of the cantilever displacement and its application for low-temperature studies[J].Ferroelectrics,2018,525(1):178-186.
    [12] FENG Lu.Adjustment of Fabry-Perot etalon and con-focal spherical sweeping interferometer[J].Physical Experiment of College,2016,29(3):18-20.冯璐.法布里-珀罗标准具和共焦球面扫描干涉仪的调节[J].大学物理实验,2016,29(3):18-20.
    [13] QU Zhang,WU Xing-sheng,WEI Jiu-yan,et al.Design of a low noise optical beam deflection detection system with high sensitivity[J].Micronanoelectronic Technology,2018(5):359-365,370.曲章,武兴盛,魏久焱,等.高灵敏低噪声光束偏转检测系统设计[J].微纳电子技术,2018(5):359-365,370.
    [14] YANG Guang.Study of scanning probe microscope system based on ARM[D].Changchun:Changchun University of Technology,2016:100-104.杨光.基于ARM的扫描探针显微镜系统的研究[D].长春:长春理工大学,2016:100-104.
    [15] ROL G,PERE R,JORDI A.Atomic force microscopy[J].Physics Today,2004,15(7):622-642.
    [16] HU H L,XU T M,HUI S E,et al.A novel capacitive system for the concentration measurement of pneumatically conveyed pulverized fuel at power stations[J].Flow Measurement&Instrumentation,2006,17(2):87-9.
    [17] ZHI Quan L I,WANG L,HUANG L J,et al.Study on refractive index and concentration sensor based on long-period fiber grating[J].Journal of Applied Optics,2004,25(4):48-5
    [18] WEI Ren-xuan,JIANG De-sheng.Solution concentration measurement with F-P interference wavelength[J].Journal of Optoelectronics Laser,2003,14(6):655-656.魏仁选,姜德生.基于F-P干涉波长的溶液浓度测量方法研究[J].光电子·激光,2003,14(6):655-656.
    [19] CHEN Xian,YU Shang-jiang,ZHOU Hui-juan,et al.Design of a F-P optical fiber explosion pressure sensor[J].Transducer&Microsystem Technologies,2018,37(2):99-105.陈显,余尚江,周会娟,等.一种F-P光纤爆炸压力传感器设计[J].传感器与微系统,2018,37(2):99-105.
    [20] WANG Kun-bo,ZHOU Yu,LIU Chao,et al.The F-P interferometric fiber optic microphone with intensity demodulation[J].Journal of Applied Acoustics,2017,36(5):438-444.王坤博,周瑜,刘超,等.强度解调的F-P干涉型光纤传声器[J].应用声学,2017,36(5):438-444.
    [21] HUANG Hai Study on New Methods and Systems of the Cavity Length Demodulation for Optical Fiber Fabry-Pérot Sensors[D].Chongqing:Chongqing University,2016.黄海.光纤法布里-珀罗传感器腔长解调新方法与系统研究[D].重庆:重庆大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700