Zn空位缺陷ZnS的电子状态、磁性质与光学性质研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electronic states,magnetic and optical properties of Zn vacant ZnS
  • 作者:韦树贡 ; 房慧 ; 王如志 ; 李凡生 ; 黄灿胜 ; 郝五零 ; 孙毅
  • 英文作者:WEI Shugong;FANG Hui;WANG Ruzhi;LI Fansheng;HUANG Cansheng;HAO Wuling;SUN Yi;College of Physics and Electronic Engineering, Guangxi Normal University for Nationalities;College of Materials Science and Engineering, Beijing University of Technology;Department of Mathematics, Yunnan Normal University;Department of Physics, Changji University;
  • 关键词:材料 ; ZnS ; Zn空位缺陷 ; 磁性 ; 光学性质
  • 英文关键词:materials;;ZnS;;Zn vacancy defect;;magnetic properties;;optical properties
  • 中文刊名:LDXU
  • 英文刊名:Chinese Journal of Quantum Electronics
  • 机构:广西民族师范学院物理与电子工程学院;北京工业大学材料科学与工程学院;云南师范大学数学学院;昌吉学院物理系;
  • 出版日期:2018-07-15
  • 出版单位:量子电子学报
  • 年:2018
  • 期:v.35;No.183
  • 基金:国家自然科学基金,11347141,11402225;; 广西省自然科学基金,2015GXNSFBA139014;; 云南省自然科学基金,2016FB012~~
  • 语种:中文;
  • 页:LDXU201804020
  • 页数:6
  • CN:04
  • ISSN:34-1163/TN
  • 分类号:125-130
摘要
基于密度泛函理论第一性原理,研究了Zn空位缺陷对ZnS半导体材料电子状态、磁性质和光学性质的影响.结果表明Zn空位缺陷浓度为6.25%时,ZnS半导体材料仍呈直接带隙型能带结构,带隙较本征ZnS半导体增大了6.4%,达到2.19 eV.缺陷体系s态、p态电子主要在距离费米能量较近的区域产生能带,数量较少;Znd态电子主要在距离费米能量较远的区域产生能带.Zn空位缺陷对ZnS半导体材料是一种空穴型掺杂,Zn空位会增加ZnS的空穴型载流子浓度.其价带空穴具有较大有效质量,导带电子具有较小有效质量,Zn空位缺陷ZnS不显示磁性.Zn空位缺陷ZnS半导体材料210 nm附近介电吸收峰强度降低,170 nm附近介电吸收峰消失,100 nm波长附近出现了较弱的介电吸收峰.
        Influences of Zn vacancy defect on electronic states, magnetic and optical properties of ZnS semiconductor material are investigated by density functional theory first principle. Results show that when the concentration of Zn vacancy defect is 6.25%, ZnS semiconductor material still exhibits a direct band gap structure. Compared with the intrinsic ZnS semiconductor, the band gap is increased by 6.4%,reaching 2.19 eV. The s and p state electrons of defect system form the energy bands near Fermi energy,few in number, and Zn d electrons form the energy bands far from Fermi energy. The Zn vacancy for ZnS semiconductor is a kind of hole doping type and the hole carrier concentration can be increased by Zn vacancy. Its hole carriers within the valence bands are heavy and the electron carriers within the conduction bands are light. Zn vacant ZnS does not show magnetism. The dielectric absorption peak intensity of Zn vacant ZnS semiconductor near 210 nm decreases, the dielectric absorption peak near 170 nm disappears and a weaker dielectric absorption peak near 100 nm emerges.
引文
[1]Zhang J H,Ding J W,Cao J X,et al.Infrared,visible and ultraviolet absorptions of transition metal doped ZnS crystals with spin-polarized bands[J].Journal of Solid State Chemistry,2011,184(3):477-480.
    [2]He Kaihua,Yu Fei,Ji Guangfu,et al.Study of optical properties and electronic structure of V in ZnS by first principle[J].Chinese Journal of High Pressure Physics(高压物理学报),2006,20(1):56-60(in Chinese).
    [3]Li Jianhua,Zeng Xianghua,Ji Zhenghua,et al.Electronic structure and optical properties of Ag doping and Zn vacancy impurities in ZnS[J].Acta Physica Sinica(物理学报),2011,60(5):057101(in Chinese).
    [4]Ma Changmin,Liu Tingyu,Chang Qiuxiang,et al.Theoretical studies on the intrinsic defects in ZnO and ZnS crystal[J].Chemical Journal of Chinese Universities(高等学校化学学报),2016,37(5):932-937(in Chinese).
    [5]Xiong Yuanpeng,Wu Bo,Wang Min,et al.First-principles study on electronic structures and optical properties of Na doping Zincblende ZnS system[J].Journal of Functional Material(功能材料),2014,45(1):01038(in Chinese).
    [6]Li Jianhua,Cui Yuanshun,Chen Guibin.Electronic structure and optical properties of Ga doped ZnS[J].Journal of Atomic Molecular Physics(原子与分子物理学报),2014,31(1):133-139(in Chinese).
    [7]Li Fansheng,Yu Xiaoying,Yang Huan,et al.Study of effects of pressure on electronic structure and electrical properties of ZnS[J].Journal of Atomic Molecular Physics(原子与分子物理学报),2016,33(4):745-752(in Chinese).
    [8]Yan Zewu,Wang Heming,Cai Yichao,et al.Study on growth technology and crystal defects in ZnS bulk crystal prepared by CVD method[J].Journal of Synthetic Crystals(人工晶体学报),2002,31(2):111-113(in Chinese).
    [9]Payne M C,Teter M P,Allan D C,et al.Iterative minimization techniques for ab initio total-energy calculationsmolecular-dynamics and conjugate gradients[J].Review of Modern Physics,1992,64:1045-1096.
    [10]Zhang F P,Lu Q M,Zhang X,et al.Electrical transport properties of CaMnO_3 thermoelectric compound:A theoretical study[J].Journal of Physics and Chemistry of Solids,2013,74:1859-1864.
    [11]Fang H,Zhang F P,Jiang Z N,et al.Strain-induced asymmetric modulation of bandgap in narrow armchair-edge grapheme nanoribbon[J].Modern Physics Letters B,2015,29(34):1550224.
    [12]Lai Lianyou,Chen Huibin.Symplectic algorithm simulation of motion and interaction of envelope soliton in Schr(o|¨)dinger equation[J].Chinese Journal of Quantum Electronics(量子电子学报),2017,34(2):231-240(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700