某水下机器人阻力特性的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of the resistance character of an underwater vehicle
  • 作者:白航 ; 王伟竹 ; 姚清河
  • 英文作者:BAI Hang;WANG Weizhu;YAO Qinghe;Department of Applied Mechanics and Engineering,Sun Yat-sen University;
  • 关键词:水下机器人 ; 阻力特性 ; 支撑结构 ; 海底隧洞 ; 数值模拟
  • 英文关键词:underwater vehicle;;resistance characters;;supporting structure;;undersea tunnel;;numerical simulation
  • 中文刊名:ZSDZ
  • 英文刊名:Acta Scientiarum Naturalium Universitatis Sunyatseni
  • 机构:中山大学应用力学与工程系;
  • 出版日期:2018-01-15
  • 出版单位:中山大学学报(自然科学版)
  • 年:2018
  • 期:v.57;No.255
  • 基金:国家自然科学基金(11572356);; NSFC-广东联合基金(NSFC2015-582)
  • 语种:中文;
  • 页:ZSDZ201801020
  • 页数:10
  • CN:01
  • ISSN:44-1241/N
  • 分类号:156-165
摘要
利用计算流体动力学(CFD)方法,对特定深孔有压隧洞环境下某类型水下机器人的阻力特性进行了研究。首先,对Suboff标准模型进行了模拟计算,计算结果与国际拖曳水池会议(ITTC)公布的试验数据基本吻合,验证了所用方法的适用性。然后,对两种不同支撑结构的机器人模型进行了计算,讨论了两种支撑结构对水下器人的阻力和表面压强的影响。最后,对不同工况下机器人的阻力特性和周围流场进行了分析。结果表明:与板件支撑结构相比,杆件支撑结构可以减小阻力和降低表面压强在不同工况时的波动程度;两种前端支撑结构模型在不同工况下的阻力和表面压强变化趋势相同,顺流行驶时阻力随着航行速度的增大而减小,而逆流行驶时阻力则随着航速增大而增大。
        In this work,the computational fluid dynamics( CFD) method is used to study the resistance character of an underwater vehicle in a specific undersea tunnel circumstance. In order to prove the validity of the proposed method,the standard Suboff model was numerically calculated and the simulation results were in agreement with the experimental data published by ITTC. This work presents different effects of resistance and pressure on two front supporting structures with the simulation results of the two different models. The flow field around the vehicle and the resistance characteristics changing under different working conditions were analyzed. The results show that the bar supporting structure can reduce the resistance and surface pressure fluctuation compared with the board model and the trend of resistance and pressure changes under different working conditions is different. In the downstream direction,the resistance decreases with the increase of navigation speed,where in the upstream direction it goes by contraries.
引文
[1]王玉婷,向先波,王瑟.基于CFD和直接计算技术的航行器阻力系数算法研究[J].中国科技论文,2016,11(19):2164-2168.WANG Yuting,XIANG Xianbo,WANG Se.A study on hydrodynamic drag coefficients of underwater vehicles based on CFD and direct calculation methods[J].China Sciencepaper,2016,11(19):2164-2168.
    [2]王妹婷,齐永锋,汤方平,等.水下机器人外形优化设计[J].机床与液压,2014,42(5):76-79.WANG Meiting,QI Yongfeng,TANG Fangping,et al.Shape optimal design of underwater robot[J].Machine Tool&Hydraulics,2014,42(5):76-79.
    [3]于宪钊,苏玉民,王兆立,等.微小型水下机器人阻力性能的数值模拟[C]∥颜开.中国造船工程学会学术论文集:船舶水动力学学术会议暨中国船舶学术界进入ITTC30周年纪念会论文集.杭州:《中国造船》编辑部,2008:132-136.
    [4]刘玉秋,于开平,张嘉钟.水下非流线型航行体减阻的数值模拟与比较[J].工程力学,2007,24(2):178-182.LIU Yuqiu,YU Kaiping,ZHANG Jiazhong.Numerical simulation and comparison on drag reduction of Non-Streamline submerged body[J].Engineering Mechanics,2007,24(2):178-182.
    [5]NEMATOLLAHI A,DADVAND A,DAWOODIAN M.An axisymmetric underwater vehicle-free surface interaction:a numerical study[J].Ocean Engineering,2015(96):205-214.
    [6]谷海涛,林扬,胡志强.带槽道桨水下机器人阻力特性的数值分析[J].微计算机信息,2007(23):227-229.GU Haitao,LIN Yang,HU Zhiqiang.Numerical analysis on the resistance of autonomous underwater vehicle with tunnel thruster[J].Microcomputer Information,2007(23):227-229.
    [7]周晗,谢海斌,徐海军,等.基于CFD的水下机器人载体形体阻力优化设计[C]∥陈宗海.系统仿真技术及其应用:系统仿真技术及其应用学术会议论文集.合肥:中国科学技术大学出版社,2009:62-66.
    [8]韩晓东,王坚茹,孟秀清.水下航行体几何外形对阻力影响的数值模拟[J].机械,2011,38(9):15-18.HAN Xiaodong,WANG Jianru,MENG Xiuqing.Underwater navigation body numerical simulation of influence on the resistance[J].Machinery,2011,38(9):15-18.
    [9]ZHANG Huaixin,PAN Yucun.Resistance performance of a dish-shaped underwater vehicle[J].Journal of Shanghai Jiaotong University,2006,40(6):979-987.
    [10]杨放琼,谭青,彭高明.不确定环境下集矿机环境感知与实时避障研究[J].中山大学学报(自然科学版),2010,49(4):58-62.YANG Fangqiong,TAN Qing,PENG Gaoming.Research on environmental awareness and real-time obstacle avoidance of collector under uncertain environment[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2010,49(4):58-62.
    [11]GEORGIADES C,NAHON M,BUEHLER M.Simulation of an underwater hexapod vehicle[J].Ocean Engineering,2009,36(9):39-47.
    [12]桑恩方.用水下机器人进行堤坝安全隐患检测[C]∥石磊.泄水建筑物安全及新材料新技术应用:泄水建筑物安全及新材料新技术应用论文集.海口:中国水利技术信息中心,2010:121-125.
    [13]孙丽.自治水下机器人(AUV)三维结构设计及仿真分析[D].青岛:中国海洋大学机械电子工程系,2011.
    [14]宋方希.基于CFD的混合驱动水下航行器外形研究[D].天津:天津大学机械工程系,2012.
    [15]YANG Xinping,XU Pengfei,HU Zhen.Research on visual simulation system of deep-sea vehicle[J].Ocean Engineering,2012,30(1):137-144.
    [16]马尧,赵宏伟.基于CFD的仿生机器鱼数值仿真分析[J].白城师范学院学报,2014,28(5):13-18.MA Yao,ZHAO Hongwei.Numerical simulation analysis of bionic robot fish based on CFD[J].Journal of Bai Cheng Normal University,2014,28(5):13-18.
    [17]LIU Guijie,CHEN Gong,JIAO Jianbo,et al.Dynamics modeling and control simulation of an autonomous underwater vehicle[J].Journal of Coastal Research,2015(73):741-746.
    [18]郭丙华,李中华.基于障碍物地平角点的移动机器人定位[J].中山大学学报(自然科学版),2013,52(5):45-50.GUO Binghua,LI Zhonghua.A method of localization for mobile robot based on obstacle-ground-corner[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2013,52(5):45-50.
    [19]王黎阳.潜水机器人在深孔有压式隧洞环境检测中的应用[J].大坝与安全,2015(3):55-58.WANG Liyang.Application of diving robot in deep hole pressure tunneling[J].Dam&Safety,2015(3):55-58.
    [20]PARK S W,KIM M S,SOHN J H,et al.Study on the fluid resistance coefficient for control simulation of an underwater vehicle[J].The Korea Society for Power System Engineering,2016,20(1):24-29.
    [21]刘源,凌杰,陈家旺.基于Fluent的水下步行机器人结构优化设计[J].中国水运,2017,17(1):125-128.LIU Yuan,LING Jie,CHEN Jiawang.Optimal design of underwater pedestrian robot structure based on fluent[J].China Water Transport,2017,17(1):125-128.
    [22]张爽,邬依林,葛伟亮,等.仿人服务机器人的平衡控制[J].中山大学学报(自然科学版),2016,55(5):14-20.ZHANG Shuang,WU Yilin,GE Weiliang,et al.Balance control of a humanoid service robots[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2016,55(5):14-20.
    [23]王福军.计算流体动力学分析---CFD软件原理与应用[M].北京:清华大学出版社,2004:272.WANG Fujun.Computational fluid dynamics analysisprinciples and applications of CFD Software[M].Bei-阻力特性的数值模拟jing:Tsinghua University Press,2004:272.
    [24]胡文清,詹杰民.一种在Fluent UDF中使用IMSLFortran数值库的方法[J].中山大学学报(自然科学版),2017,56(3):31-35.HU Wenqing,ZHAN Jiemin.A method of using IMSLFortran numerical libraries in Fluent UDF[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2017,56(3):31-35.
    [25]张楠,沈泓萃,姚惠之.潜艇阻力与流场的数值模拟与验证及艇型的数值优化研究[J].船舶力学,2005,9(1):1-13.ZHANG Nan,SHEN Hongcai,YAO Huizhi.Numerical simulation and verification of submarine resistance and flow field and numerical optimization of hull shape[J].Journal of Ship Mechanics,2005,9(1):1-13.
    [26]汪小翔,许靖峰,李徐,等.艇模水下阻力试验方法研究与数值验证[J].舰船科学技术,2016,38(4):42-46.WANG Xiaoxiang,XU Jingfeng,LI Xu,et al.Study on the underwater resistance test method and numerical verification of the jets[J].Ship Science and Technology,2016,38(4):42-46.
    [27]陈小邹.翼型附体与平板交接部流场分析[J].舰船科学技术,2010,32(10):8-11.CHEN Xiaozou.Flow field analysis of airfoil attached to flat plate[J].Ship Science and Technology,2010,32(10):8-11.
    [28]常煜,张志荣,赵峰.多块结构化网格在含附体水面船模粘性流场数值计算中的应用[J].船舶力学,2004,8(1):19-25.CHANG Yu,ZHANG Zhirong,ZHAO Feng.Application of multiple structured grids to numerical simulation of viscous flow field in surface ship with attached body[J].Journal of Ship Mechanics,2004,8(1):19-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700