不同光照条件和土壤含水量对节节麦表型可塑性及化感作用的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of different light conditions and soil water contents on phenotypic plasticity and allelopathic effect of Aegilops tauschii
  • 作者:王宁 ; 袁美丽 ; 陈浩 ; 李真真
  • 英文作者:WANG Ning;YUAN Meili;CHEN Hao;LI Zhenzhen;Forestry College,He’nan University of Science and Technology;The Sui & Tang Dynasties Relics Botanic Garden of Luoyang;
  • 关键词:节节麦 ; 遮光 ; 土壤含水量 ; 生物量分配 ; 表型可塑性 ; 化感作用
  • 英文关键词:Aegilops tauschii Coss.;;shading;;soil water content;;biomass allocation;;phenotypic plasticity;;allelopathic effect
  • 中文刊名:ZWZY
  • 英文刊名:Journal of Plant Resources and Environment
  • 机构:河南科技大学林学院;洛阳市隋唐城遗址植物园;
  • 出版日期:2019-02-25
  • 出版单位:植物资源与环境学报
  • 年:2019
  • 期:v.28
  • 基金:河南省自然科学基金资助项目(182300410092);; 国家教育部地方高校国家级大学生创新创业训练计划项目(201510464079)
  • 语种:中文;
  • 页:ZWZY201901006
  • 页数:9
  • CN:01
  • ISSN:32-1339/S
  • 分类号:36-44
摘要
采用盆栽法,通过非遮光(全光照)和遮光(光照强度约为全光照的20%)以及控制土壤含水量(高、中、低含水量分别为田间最大持水量的75%~80%、55%~60%和45%~50%),研究了不同光照条件和土壤含水量对节节麦(Aegilops tauschii Coss.)幼苗表型可塑性的影响;并采用生物测定法,比较了各处理组节节麦处理液的化感作用差异。结果表明:光照及土壤含水量的降低均可导致节节麦幼苗单株总干质量的降低,且遮光处理组幼苗根、茎和叶的干质量比以及根冠比、叶面积比、叶根比和比叶面积总体上高于非遮光处理组。其中,遮光-低含水量处理组幼苗单株总干质量最低,叶干质量比、叶面积比和叶根比最大;遮光-高含水量处理组幼苗根干质量比最大;遮光-中含水量处理组幼苗茎干质量比和比叶面积最大。各处理组间幼苗单株总干质量和各器官干质量比以及各形态指标的表型可塑性指数差异明显,以叶根比的表型可塑性指数最大(0.96),茎干质量比的表型可塑性指数最小(0.42)。生物测定结果表明:随各处理组节节麦处理液浓度(0、10、25和50 mg·mL~(-1))的升高,小白菜(Brassica rapa Linn.)种子发芽率呈逐渐下降的趋势,且在相同光照条件下,随土壤含水量降低种子发芽率升高;总体上,非遮光处理组的种子发芽率均低于遮光处理组。从化感效应指数(RI)看,总体上除了非遮光-高含水量和非遮光-中含水量处理组小白菜幼苗苗高的RI值为正值外,各处理组小白菜幼苗苗高、主根长和单株鲜质量的RI值均为负值。从综合化感效应(SE)看,各处理组的SE值均为负值,且在节节麦处理液浓度相同条件下,相同光照处理组的SE值整体上随土壤含水量的降低而逐渐减小,相同土壤含水量处理组的SE值整体上也随光照的降低而逐渐减小;总体上,遮光处理组的SE值的绝对值大于非遮光处理组。综合分析结果表明:光照对节节麦生长和化感效应的影响作用较土壤含水量更大。在光照和水分胁迫条件下,节节麦幼苗减少了自身对化感物质的投入,并表现出较高的表型可塑性,且主要通过调节与叶片形态相关的指标适应生境条件变化。
        Effects of different light conditions and soil water contents on phenotypic plasticity of Aegilops tauschii Coss. seedlings were studied by no shading(full light) and shading(light intensity of 20% of full light), and controlling soil water content(high, moderate and low water contents of 75%-80%, 55%-60% and 45%-50% of the maximum water holding capacity in field, respectively) with pot-culture method; difference in allelopathic effect of treatment solution from A. tauschii in each treatment group was compared by using bioassay method. The results show that decreases of light and soil water content both can cause decrease of total dry mass per plant of A. tauschii seedlings, and dry mass ratios of root, stem and leaf, and root/shoot ratio, leaf area ratio, leaf/root ratio and specific leaf area of seedlings in shading treatment groups are generally higher than those in no shading treatment groups. In which, total dry mass per plant of seedlings in shading-low water content treatment group is the lowest, and leaf dry mass ratio, leaf area ratio and leaf/root ratio are the largest; root dry mass ratio of seedlings in shading-high water content treatment group is the largest; stem dry mass ratio and specific leaf area of seedlings in shading-moderate water content treatment group are both the largest. There are obvious differences in phenotypic plasticity indexes of total dry mass per plant, dry mass ratio of each organ and each morphology index of seedlings among each treatment group, and phenotypic plasticity index of leaf/root ratio is the largest(0.96), while that of dry mass ratio of stem is the smallest(0.42). The bioassay result shows that with the increase of concentration(0, 10, 25, and 50 mg·mL~(-1)) of treatment solution from A. tauschii in each treatment group, seed germination rate of Brassica rapa Linn. decreases gradually, and seed germination rate increases with the decrease of soil water content under the same light condition; in general, seed germination rates in no shading treatment groups are all lower than those in shading treatment groups. From the view of allelopathic effect index(RI), except RI values of seedling height of B. rapa seedlings in no shading-high water content and no shading-moderate water content treatment groups are positive, while those of seedling height, main root length, and fresh mass per plant of B. rapa seedlings in each treatment group are all negative in general. From the view of synthetical allelopathic effect(SE), SE values in each treatment group are all negative, and SE values in the same light treatment group gradually decrease with decrease of soil water content, those in the same soil water content treatment group also gradually decrease with decrease of light under the same concentration of treatment solution from A. tauschii; in general, absolute values of SE values in shading treatment groups are larger than those in no shading treatment groups. The comprehensive analysis result shows that light has more effect on growth and allelopathic effect of A. tauschii than that of soil water content. Under light and water stress conditions, A. tauschii seedlings decrease their contribution to allelochemicals, show relatively high phenotypic plasticity, and adapt to the change of habitat condition by regulating indexes related to leaf morphology.
引文
[1] BRADSHAW A D. Evolutionary significance of phenotypic plasticity in plants[J]. Advances in Genetics, 1965, 13(1): 115-155.
    [2] SULTAN S E. Phenotypic plasticity for plant development, function and life history[J]. Trends in Plant Science, 2000, 5(12): 537-542.
    [3] REJMANEK M, RICHARDSON D M. What attributes makes some plant species more invasive?[J]. Ecology, 1996, 77(6): 1655-1661.
    [4] CHAMBERS J C, ELDREDGE E P, SNYDER K A, et al. Restoring abandoned agricultural lands in cold desert shrublands: tradeoffs between water availability and invasive species[J]. Invasive Plant Science and Management, 2014, 7(1): 176-189.
    [5] MARTIN L J, MURRAY B R. A predictive framework and review of the ecological impacts of exotic plant invasions on reptiles and amphibians[J]. Biological Reviews, 2011, 86(2): 407-419.
    [6] 许凯扬, 叶万辉, 李静, 等. 入侵种喜旱莲子草对土壤养分的表型可塑性反应[J]. 生态环境, 2005, 14(5): 723-726.
    [7] CLARIDGE K, FRANKLIN S B. Compensation and plasticity in an invasive plant species[J]. Biological Invasions, 2002, 4(4): 339-347.
    [8] 王宇涛, 麦菁, 李韶山, 等. 华南地区严重危害入侵植物薇甘菊和五爪金龙入侵机制研究[J]. 华南师范大学学报(自然科学版), 2012, 44(4): 1-5.
    [9] 王瑞龙, 韩萌, 梁笑婷, 等. 三叶鬼针草生物量分配与化感作用对大气温度升高的响应[J]. 生态环境学报, 2011, 20(6/7): 1026-1030.
    [10] 李军, 王瑞龙. 土壤水分对外来入侵植物五爪金龙植株表型可塑性和化感作用的影响[J]. 生态环境学报, 2014, 23(11): 1759-1763.
    [11] WANG R L, STAEHELIN C, PENG S L, et al. Responses of Mikania micrantha, an invasive weed to elevated CO2: induction of β-caryophyllene synthase, changes in emission capability and allelopathic potential of β-caryophyllene[J]. Journal of Chemical Ecology, 2010, 36(10): 1076-1082.
    [12] CALLAWAY R M, RIDENOUR W M. Novel weapons: invasive success and the evolution of increased competitive ability[J]. Frontiers in Ecology and the Environment, 2004, 2(8): 436-443.
    [13] 黄乔乔, 沈奕德, 李晓霞, 等. 不同光照和水分条件对土著灾变种金钟藤形态性状和化感作用的影响[J]. 生态学杂志, 2015, 34(2): 438-444.
    [14] METLEN K L, ASCHEHOUG E T, CALLAWAY R M. Plant behavioural ecology: dynamic plasticity in secondary metabolites[J]. Plant, Cell and Environment, 2009, 32(6): 641-653.
    [15] UESUGI A, KESSLER A. Herbivore exclusion drives the evolution of plant competitiveness via increased allelopathy[J]. New Phytologist, 2013, 198(3): 916-924.
    [16] DROSTE T, FLORY S L, CLAY K. Variation for phenotypic plasticity among populations of an invasive exotic grass[J]. Plant Ecology, 2010, 207(2): 297-306.
    [17] 葛结林, 何家庆, 孙晓方, 等. 入侵植物加拿大一枝黄花对土壤水分变化的生态学响应[J]. 西北植物学报, 2010, 30(3): 575-585.
    [18] GRIFFITH A B, ANDONIAN K, WEISS C P, et al. Variation in phenotypic plasticity for native and invasive populations of Bromus tectorum[J]. Biological Invasions, 2014, 16(12): 2627-2638.
    [19] 房锋, 高兴祥, 魏守辉, 等. 麦田恶性杂草节节麦在中国的发生发展[J]. 草业学报, 2015, 24(2): 194-201.
    [20] 房锋, 张朝贤, 黄红娟, 等. 麦田节节麦发生动态及其对小麦产量的影响[J]. 生态学报, 2014, 34(14): 3917-3923.
    [21] 王克功, 曹亚萍, 任瑞兰, 等. 麦田恶性杂草节节麦发芽特性研究[J]. 麦类作物学报, 2010, 30(5): 958-962.
    [22] 王宁, 袁美丽, 陈浩. 小麦水浸提液对节节麦种子萌发和幼苗生长的影响[J]. 浙江农林大学学报, 2018, 35(1): 112-120.
    [23] 邱治军, 曾震军, 周光益, 等. 流溪河小流域3种林分的土壤水分物理性质[J]. 南京林业大学学报(自然科学版), 2010, 34(3): 62-66.
    [24] 潘玉梅, 唐赛春, 韦春强, 等. 不同光照和水分下三叶鬼针草与本地种金盏银盘生长特征的比较研究[J]. 热带亚热带植物学报, 2012, 20(5): 489-496.
    [25] 黄玲, 高阳, 李新强, 等. 水分胁迫下不同年代冬小麦品种干物质积累与转运特性[J]. 中国生态农业学报, 2013, 21(8): 943-950.
    [26] 霍治国, 白月明, 温民, 等. 水分胁迫效应对冬小麦生长发育影响的试验研究[J]. 生态学报, 2001, 21(9): 1527-1535.
    [27] 肖强, 叶文景, 朱珠, 等. 利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法[J]. 生态学杂志, 2005, 24(6): 711-714.
    [28] 王俊峰, 冯玉龙. 光强对两种入侵植物生物量分配、叶片形态和相对生长速率的影响[J]. 植物生态学报, 2004, 28(6): 781-786.
    [29] 王蕊, 孙备, 李建东, 等. 不同光强对入侵种三裂叶豚草表型可塑性的影响[J]. 应用生态学报, 2012, 23(7): 1797-1802.
    [30] 杨贺雨, 卫海燕, 桑满杰, 等. 华中五味子叶表型可塑性及环境因子对叶表型的影响[J]. 植物学报, 2016, 51(3): 322-334.
    [31] WILLIAMSON G B, RICHARDSON D. Bioassays for allelopathy: measuring treatment responses with independent controls[J]. Journal of Chemical Ecology, 1988, 14(1): 181-187.
    [32] 高姗, 廖超英, 刘瑞顺, 等. 黑沙蒿(Artemisia ordosica)对羊柴(Hedysarum laeve)及柠条(Caragana intermedia)的化感作用[J]. 中国沙漠, 2015, 35(3): 645-651.
    [33] 刘威, 陈佳宁, 张帆, 等. 白三叶水浸提液对草坪草的化感作用[J]. 东北农业大学学报, 2014, 45(5): 52-58.
    [34] CLARDGE K, FRANKLIN S B. Compensation and plasticity in an invasive plant species[J]. Biological Invasions, 2002, 4(4): 339-347.
    [35] 樊星, 蔡捡, 刘金平, 等. 局部遮光对鹅绒委陵菜基株形态塑性及生物量配置的影响[J]. 草业学报, 2016, 25(3): 172-180.
    [36] DEWALT S J, DENSLOW J S, HAMRICK J L. Biomass allocation, growth, and photosynthesis of genotypes from native and introduced ranges of the tropical shrub Clidemia hirta[J]. Oecologia, 2004, 138(4): 521-531.
    [37] MARTINA J P, VON ENDE C N. Highly plastic response in morphological and physiological traits to light, soil-N and moisture in the model invasive plant, Phalaris arundinacea[J]. Environmental and Experimental Botany, 2012, 82: 43-53.
    [38] GUO W, LI B, ZHANG X, et al. Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedling to simulated water stress[J]. Journal of Arid Environments, 2007, 69(3): 385-399.
    [39] MAGNANI F, MENCUCCINI M, GRANCE J. Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints[J]. Plant, Cell and Environment, 2000, 23(3): 251-263.
    [40] 李冬琴, 曾鹏程, 陈桂葵, 等. 干旱胁迫对3种豆科灌木生物量分配和生理特性的影响[J]. 中南林业科技大学学报, 2016, 36(1): 33-39.
    [41] 谢瑞娟, 张小晶, 刘金平, 等. 干旱和遮阴对荩草构件形态及生物量分配的影响[J]. 草业科学, 2017, 34(7): 1496-1505.
    [42] 王林龙, 李清河, 徐军, 等. 干旱胁迫对不同种源油蒿幼苗的生长和形态可塑性的影响[J]. 东北林业大学学报, 2015, 43(10): 55-57.
    [43] YANG W, LIU F, ZHOU L, et al. Growth and photosynthetic responses of Canarium pimela and Nephelium topengii seedlings to a light gradient[J]. Agroforestry Systems, 2013, 87(3): 507-516.
    [44] GROTKOPP E, REJMáNEK M. High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms[J]. American Journal of Botany, 2007, 94(4): 526-532.
    [45] HAMILTON M A, MURRAY B R, CADOTTE M W, et al. Life-history correlates of plant invasiveness at regional and continental scales[J]. Ecology Letters, 2005, 8(8): 1066-1074.
    [46] 杨柳, 何正军, 赵文吉, 等. 狭叶红景天幼苗对水分及遮阴的生长及生理生化响应[J]. 生态学报, 2017, 37(14): 4706-4714.
    [47] HUEY R B, GILCHRIST G W, CALSON M L, et al. Rapid evolution of a geographic cline in size in an introduced fly[J]. Science, 2000, 287(5451): 308-309.
    [48] RICE E L. Allelopathy[M]. 2nd ed. New York: Academic Press, 1984: 422.
    [49] CALLAWAY R M, WALKER L R. Competition and facilitation: a synthetic approach to interactions in plant communities[J]. Ecology, 1997, 78(7): 1958-1965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700