分子动力学模拟水分对直链淀粉扩散性质和玻璃态转变温度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Moisture Content on Diffusion Properties and Glass Transition Temperature of Amylose by Molecular Dynamics Simulation
  • 作者:官斌 ; 钟业俊
  • 英文作者:Guan Bin;Zhong Yejun;The National Key Laboratory of Food Science,Nanchang University;Jiangxi Province Bureau of Quality and Technical Supervision administrative license review;
  • 关键词:分子动力学 ; 玻璃态转变温度 ; 直链淀粉 ; 径向分布函数
  • 英文关键词:molecular dynamics,glass transition temperature,amylose,radial distribution function
  • 中文刊名:ZLYX
  • 英文刊名:Journal of the Chinese Cereals and Oils Association
  • 机构:南昌大学食品科学与技术国家重点实验室;江西省质量技术监督行政许可评审中心;
  • 出版日期:2015-04-25
  • 出版单位:中国粮油学报
  • 年:2015
  • 期:v.30
  • 基金:“十二五”国家科技支撑计划(2012BAD37B02)
  • 语种:中文;
  • 页:ZLYX201504006
  • 页数:5
  • CN:04
  • ISSN:11-2864/TS
  • 分类号:26-30
摘要
为了预测水分对直链淀粉玻璃态温度、径向分布函数和扩散系数的影响,在COMPASS力场和等温等压(NPT)系综下,利用分子动力学模拟方法,模拟得到了不同水分含量直链淀粉在298 K下的径向分布函数和扩散系数;在200~460 K温度范围内,通过模拟获得不同温度下的比体积,与对应的温度作图,研究了水分对直链淀粉玻璃态转变行为的影响。结果表明,所构建的直链淀粉模型属于一种无定型结构,其径向分布函数的形状和峰位基本没有发生变化。随着水分含量的增加,水分子更容易在直链淀粉中扩散,与直链淀粉分子发生相互作用的概率增大。水分含量对直链淀粉玻璃态转变行为影响显著,水分含量越高,直链淀粉的玻璃态转变温度越低。
        Under the COMPASS force field and NPT statistical ensemble,the radial distribution function as well as diffusion coefficient of amylose had been studied under 298 K by molecular dynamics( MD) simulation. The glass transition temperature( Tg) of amylose had been obtained in the range 200 ~ 460 K through plotted the specific volume-temperature curve in differential moisture content. The results indicated that the amylose models belonged to amorphous structure and no significant alteration expressed on the peak shapes and the position of radial distribution function. Along with the increase of moisture content,the water molecules were easier to interact with amylose structure and the effects of moisture content on decreasing of Tgof amylose were significant.
引文
[1]Rahman M S.Food stability determination by macro-micro region concept in the state diagram and by defining a critical temperature[J].Journal of Food Engineering,2010,99:402-416
    [2]Liu H,Uhlherr A,Dil Iulster M K.Quantitalire structureproperty relationships for composites:prediction of glass transition temperatures for epoxy resins[J].Polymer,2004,45:2051-2060
    [3]Jaya S,Das H.Glass transition and sticky point temperatures and stability/mobility diagram of fruit powders[J].Food and Bioprocess Technology,2009,2(1):89-95
    [4]魏长庆,刘文玉,许程剑.淀粉玻璃化转变及其对食品质的影响[J].粮食与油脂,2012(1):4-6
    [5]付一政,刘亚青,兰艳花.端羟基聚丁二烯/增塑剂共混物相容性的分子动力学模拟[J].物理化学学报,2009,25(7):1267-1272
    [6]Simperler A,Kornherr A,Chopra R,et al.The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water:an experimental and in silico study[J].Carbohydrate Research,2007,342(11):1470-1479
    [7]Goula A M,Karapantsios T D,Achilias D S,et al.Water sorption isotherms and glass transition temperature of spray dried tomato pulp[J].Journal of Food Engineering,2008,85(1):73-83
    [8]Ruan R,Chen P L.Measurement of state transition temperature using NMR and MRL[J].Leatherhead Food RA Food Industry Joumal,1999,2(3):238-250
    [9]杨小震.分子模拟与高分子材料[M].北京:科学出版社,2002
    [10]Buchholz J,Paul W,Varnik F,et al.Cooling rate dependence of the glass transition temperature of polymer melts:Molecular dynamics study[J].The Journal of Chemical Physics,2002,117:7364-7372
    [11]Sane S B,agin T,Knauss W G,et al.Molecular dynamics simulations to compute the bulk response of amorphous PMMA[J].Journal of Computer-aided Materials Design,2001,8(2):87-106
    [12]吉青,杨小震.分子力场发展的新趋势[J].化学通报,2005(2):111-116
    [13]Momany F A,Willett J L.Molecular dynamics calculations on amylose fragments.I.Glass transition temperatures of maltodecaose at 1,5,10,and 15.8%hydration[J].BioPolymers,2002,63(2):99-110
    [14]邱福生,任力,王家鸣,等.分子动力学模拟预测壳聚糖的玻璃化转变温度[J].化工学报,2012,63(7):2285-2289
    [15]Luo Z,Jiang J.Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride)blends[J].Polymer,2010,51(1):291-299
    [16]曾鲁红.分子动力学模拟研究直链淀粉的增塑[D].镇江:江苏科技大学,2012
    [17]李楚新,吴超富,徐伟箭.不同固化剂对环氧树脂玻璃化温度影响的分子动态模拟研究[J].热固性树脂,2006,21(6):29-31
    [18]Abou-Rachid H,Lussier L S,Ringuette S,et al.On the correlation between miscibility and solubility properties of energetic plasticizers/polymer blends:Modeling and simulation studies[J].Propellants,Explosives,Pyrotechnics,2008,33(4):301-310
    [19]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社,2007:112-113
    [20]丁丽颖,耿春宇,赵月红,等.甲烷水合物分解及自保护效应的分子动力学模拟[J].中国科学:B辑,2008,38(2):161-169
    [21]陈俊.葡聚糖凝胶中水的实验与模拟研究[D].广州:中山大学,2010
    [22]Liu H,Sale K L,Holmes B M,et al.Understanding the interactions of cellulose with ionic liquids:a molecular dynamics study[J].The Journal of Physical Chemistry B,2010,114(12):4293-4301
    [23]张慧军,岳红,刘倩,等.形态记忆高分子材料性能评价的分子模拟研究[J].材料导报,2010,24(9):116-119
    [24]Liu P,Yu L,Wang X,et al.Glass transition temperature of starches with different amylose/amylopectin ratios[J].Journal of Cereal Science,2010,51(3):388-391
    [25]Roudaut G,Simatos D,Champion D,et al.Molecular mobility around the glass transition temperature:a mini review[J].Innovative Food Science&Emerging Technologies,2004,5(2):127-134
    [26]de Graaf R A,Karman A P,Janssen L P B M.Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing[J].Starch/Strke,2003,55(2):80-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700