用户名: 密码: 验证码:
钙化软骨层硬度变化对骨软骨结构应力影响的有限元分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of stiffness change of calcified cartilage zone on the stress of osteochondral structure using finite element analysis
  • 作者:陈凯宁 ; 农明善 ; 叶青 ; 罗柳宁 ; 杨幸 ; 陈诚 ; 王富友
  • 英文作者:Chen Kaining;Nong Mingshan;Ye Qing;Luo Liuning;Yang Xing;Chen Cheng;Wang Fuyou;Department of Orthopedics, Guangxi General Hospital of Chinese Armed Police Force;Department of Joint Surgery, Southwest Hospital, Army Medical University (the Third Military Medical University);
  • 关键词:软骨 ; 骨和骨组织 ; 有限元分析 ; 生物力学 ; 组织工程 ; 透明软骨 ; 钙化软骨层 ; 软骨下骨 ; 骨软骨结构 ; 应力 ; 国家自然科学基金
  • 英文关键词:,Cartilage;;Bone and Bones;;Finite Element Analysis;;Biomechanics;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:武警广西总队医院骨科;陆军军医大学(第三军医大学)西南医院关节外科;
  • 出版日期:2019-02-25
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.869
  • 基金:国家自然科学基金重点项目(81271981),项目负责人:王富友;; 广西自然科学基金(2015GXNSFAA139168),项目负责人:陈凯宁~~
  • 语种:中文;
  • 页:XDKF201912016
  • 页数:6
  • CN:12
  • ISSN:21-1581/R
  • 分类号:83-88
摘要
背景:从少年到成年,再到老年阶段,钙化软骨层的硬度逐渐增加。然而钙化软骨层的硬度变化对关节骨软骨结构的应力有何影响目前并不十分清楚。目的:运用有限元分析法,探讨钙化软骨层的硬度改变对关节骨软骨结构应力的影响。方法:建立包含透明软骨、钙化软骨层和软骨下骨的骨软骨结构有限元模型,并模拟少年、成年和老年时期的特点,建立对应的钙化软骨层柔软、正常和坚硬有限元模型,施加压缩载荷(0.5-3.0MPa),对比分析3个模型中3层结构的应力分布情况。结果与结论:(1)当钙化软骨层坚硬时,其应力峰值比正常时增加26.51%,而透明软骨的应力峰值与正常时相似;(2)当钙化软骨层柔软时,其自身和透明软骨的应力峰值分别比正常时减少52.09%和33.93%,且当载荷大于1.0 MPa时模型失效;(3)可见坚硬的钙化软骨层承受着更大的应力,并对透明软骨无明显影响;而柔软的钙化软骨层使自身和透明软骨受到的应力明显小于正常,并造成骨软骨结构仅能承受较小的压缩负荷。
        BACKGROUND: From childhood to adulthood, and to old age, the stiffness of calcified cartilage zone increases gradually. But it is poorly understood that the effect of stiffness change of calcified cartilage zone on the stress of articular osteochondral structure. OBJECTIVE: To investigate the effect of stiffness change of calcified cartilage zone on the stress of articular osteochondral structure using finite element analysis. METHODS: A finite element model of osteochondral structure was established with hyaline cartilage, calcified cartilage zone and subchondral bone. Then, by simulating the features of childhood, adulthood and old age, three corresponding finite element models were created: calcified cartilage zone soft model, calcified cartilage zone normal model, and calcified cartilage zone hard model. Compression loads(0.5-3.0 MPa) were respectively applied to the three models so as to compare the stress distributions of three layers among three models. RESULTS AND CONCLUSION:(1) When calcified cartilage zone became hard, the maximum stress of itself was 26.51% more than normal, whereas the maximum stress of hyaline cartilage was similar to the normal.(2) When calcified cartilage zone became soft, the maximum stress of itself and hyaline cartilage was 52.09% and 33.93% less than normal, respectively. Besides, the calcified cartilage zone soft model would be out of action when the compression load was higher than 1.0 MPa.(3) In summary, hardened calcified cartilage zone suffers more stress than normal and does no effect on the stress of hyaline cartilage. Softened calcified cartilage zone renders the stresses of itself and hyaline cartilage to be much less than normal and allows osteochondral structure to bear small compression loads.
引文
[1]王富友,杨柳,段小军,等.人体正常膝关节钙化软骨层组成成分研究[J].第三军医大学学报,2008,30(8):687-690.
    [2]Wang F,Ying Z,Duan X,et al.Histomorphometric analysis of adult articular calcified cartilage zone.J Struct Biol.2009;168(3):359-365.
    [3]Gupta HS et al.Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface.J Struct Biol.2005;149(2):138-148.
    [4]Flachsmann R,Broom ND,Hardy AE,et al.Why is the adolescent joint particularly susceptible to osteochondral shear fracture?Clin Orthop Relat Res.2000;1(381):212-221.
    [5]Hargrave-Thomas E,van Sloun F,Dickinson M,et al.Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states.Osteoarthritis Cartilage.2015;23(10):1755-1762.
    [6]Burr DB.Anatomy and physiology of the mineralized tissues:role in the pathogenesis of osteoarthrosis.Osteoarthritis Cartilage.2004;12Suppl A:S20-30.
    [7]宋伟,王富友,杨柳.关节软骨钙化层研究进展[J].中国修复重建外科杂志,2011,25(11):1339-1342.
    [8]Norrdin RW,Kawcak CE,Capwell BA,et al.Calcified cartilage morphometry and its relation to subchondral bone remodeling in equine arthrosis.Bone.1999;24(2):109-114.
    [9]Zizak I,Roschger P,Paris O,et al.Characteristics of mineral particles in the human bone/cartilage interface.J Struct Biol.2003;141(3):208-217.
    [10]Mente PL,Lewis JL.Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone.J Orthop Res.1994;12(5):637-647.
    [11]Allan KS,Pilliar RM,Wang J,et al.Formation of biphasic constructs containing cartilage with a calcified zone interface.Tissue Eng.2007;13(1):167-177.
    [12]St-Pierre JP,Gan L,Wang J,et al.The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate.Acta Biomater.2012;8(4):1603-1615.
    [13]Campbell SE,Ferguson VL,Hurley DC.Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation.Acta Biomater.2012;8(12):4389-4396.
    [14]Stender ME,Carpenter RD,Regueiro RA,et al.An evolutionary model of osteoarthritis including articular cartilage damage,and bone remodeling in a computational study.J Biomech.2016;49(14):3502-3508.
    [15]Anderson DD,Brown TD,Radin EL.The influence of basal cartilage calcification on dynamic juxtaarticular stress transmission.Clin Orthop.1993;286:298-307.
    [16]Dar FH,Aspden RM.A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues.Proc Inst Mech Eng H.2003;217(5):341-348.
    [17]Taylor AM.Metabolic and endocrine diseases,cartilage calcification and arthritis.Curr Opin Rheumatol.2013;25(2):198-203.
    [18]Goldring SR,Goldring MB.Changes in the osteochondral unit during osteoarthritis:structure,function and cartilage-bone crosstalk.Nat Rev Rheumatol.2016;12(11):632-644.
    [19]Cheng HW,Luk KD,Cheung KM,et al.In vitro generation of an osteochondral interface from mesenchymal stem cell-collagen microspheres.Biomaterials.2011;32(6):1526-1535.
    [20]Lee WD,Hurtig MB,Pilliar RM,et al.Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells.Osteoarthritis Cartilage.2015;23(8):1307-1315.
    [21]王富友,杨柳,段小军,等.正常膝关节软骨钙化层形态结构研究[J].中国修复重建外科杂志,2008,22(5):524-527.
    [22]Simha NK,Jin H,Hall ML,et al.Effect of indenter size on elastic modulus of cartilage measured by indentation.J Biomech Eng.2007;129(5):767-775.
    [23]Knecht S,Vanwanseele B,Stussi E.A review on the mechanical quality of articular cartilage-implications for the diagnosis of osteoarthritis.Clin Biomech(Bristol,Avon).2006;21(10):999-1012.
    [24]Byers PD,Brown RA.Cell columns in articular cartilage physes questioned:a review.Osteoarthritis Cartilage.2006;14(1):3-12.
    [25]Frisbie DD,CrossM W,McIlwraith C W.A comparative study of articular cartilage thickness in the stifle of animal species used in human preclinical studies compared to articular cartilage thickness in the human knee.Vet Comp Orthop Traumatol.2006;19(3):142-146.
    [26]Daubs BM,Markel MD,Manley PA.Histomorphometric analysis of articular cartilage,zone of calcifed cartilage,and subchondral bone plate in femoral heads from clinically normal dogs and dogs with moderate or severe osteoarthritis.Am J Vet Res.2006;67(10):1719-1724.
    [27]Ferguson VL,Bushby AJ,Boyde A.Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone.J Anat.2003;203(2):191-202.
    [28]Malekipour F,Oetomo D,Lee PV.Equine subchondral bone failure threshold under impact compression applied through articular cartilage.J Biomech.2016;49(10):2053-2059.
    [29]Turley SM,Thambyah A,Riggs CM,et al.Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model.J Anat.2014;224(6):647-658.
    [30]宋伟,杨柳,王富友.膝关节原发性骨关节炎软骨和软骨下骨病理改变的定量研究[J].中国修复重建外科杂志,2011,25(12):1434-1439.
    [31]Burr DB,Radin EL.Microfractures and microcracks in subchondral bone:are they relevant to osteoarthrosis?Rheum Dis Clin North Am.2003;29(4):675-685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700