镍铝涂层晶粒细化与金属氧化物掺杂改性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Grain Refinement and Metal Oxide Dispersions on High-Temperature Oxidation Resistance of Nickel Aluminide Coating
  • 作者:彭晓 ; 田礼熙 ; 张帮彦 ; 王小兰 ; 董志宏
  • 英文作者:PENG Xiao;TIAN Lixi;ZHANG Bangyan;WANG Xiaolan;DONG Zhihong;Institute of Corrosion and Protection, School of Materials Science and Engineering,Nanchang Hangkong University;Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences;
  • 关键词:扩散渗铝涂层 ; NiAl ; 高温氧化 ; 晶粒细化 ; 金属氧化物弥散 ; 稀土元素效应 ; Al_2O_3膜 ; 黏附性
  • 英文关键词:Diffusion aluminized coating;;Ni Al;;High temperature oxidation;;Grain refinement;;Metal oxide dispersion;;Reactive element effect;;Al_2O_3 scale;;Oxide adhesion
  • 中文刊名:HKGJ
  • 英文刊名:Aeronautical Manufacturing Technology
  • 机构:南昌航空大学材料科学与工程学院腐蚀与防护研究所;中国科学院金属研究所金属腐蚀与防护国家重点实验室;
  • 出版日期:2019-02-01
  • 出版单位:航空制造技术
  • 年:2019
  • 期:v.62
  • 基金:国家自然科学基金(51471178;51271189;51071162)
  • 语种:中文;
  • 页:HKGJ201903012
  • 页数:8
  • CN:03
  • ISSN:11-4387/V
  • 分类号:38-44+51
摘要
包埋渗铝获得的镍铝涂层是一种最早使用的Al_2O_3膜热生长型高温涂层。自20世纪50年代应用于航空发动机热端部构件的高温防护以来,进一步提高其抗高温氧化性能的机理和技术研究延续至今。基于对合金氧化及Al_2O_3膜热生长机制的理解,提出了晶粒细化与特定金属氧化物掺杂可提升镍铝涂层抗氧化性能的观点,介绍了涂层晶粒细化与金属氧化物弥撒掺杂方法,讨论了这些结构和成分改性影响涂层抗高温氧化性能的关键因素:包括Al_2O_3膜生长速度、亚稳态相向稳态相转变、涂层的黏附性以及涂层与合金基体的互扩散。这些新的研究结果有望为进一步挖掘渗铝涂层的应用潜力、延长其服役寿命提供理论和试验基础。
        NiAl coating obtained by pack aluminization is the firstly used as Al_2O_3-forming high-temperature coating. Since the middle of the last century, NiAl coatings were employed in hot sections of aero-engines for protection against high temperature oxidation. Investigations of the oxidation mechanisms of the coating, and exploration of the coating techniques continue up to now. On a basis of understanding to the oxidation mechanism of alloys and thermal growth of Al_2O_3, a concept of improving the oxidation resistance of nickel aluminide coating by means of grain refinement and typical metal oxide dispersions has been proposed. Meanwhile a method to refine the grains of the nickel aluminide coating and disperse it with metal oxide nanoparticles has been presented, and key factors(including growth rate of the Al_2O_3 scale, Al_2O_3 phase transformation from metastable phases to the stable phase, the Al_2O_3 adhesion to the coating as well as the interdiffusion between the coating and the metal substrate) intrinsically correlated with the oxidation resistance of the coating which can be significantly affected by its modification in microstructure and chemical composition have been reviewed. The new result is expected to be helpful to further offer theoretical and experimental bases for tapping the potential and prolonging the service life of the aluminized coatings in application.
引文
[1]PENG X.Metallic coatings for high-temperature oxidation resistance[M]//Thermal barrier coatings.Woodhead Pub.Ltd.,2011.
    [2]GOWARD G W.Progress in coatings for gas turbine airfoils[J].Surface Coating&Technology,1998,108-109(1):73-79.
    [3]LEYENS C,PINT B A,WRIGHT I G.Effect of composition on the oxidation and hot corrosion resistance of Ni Al doped with precious metals[J].Surface Coating&Technology,2000,133-134(11):15-22.
    [4]YU R,HOU P Y.First-principles calculations of the effect of Pt on Ni Al surface energy and the site preference of Pt[J].Applied Physics Letters,2007,91(1):1-3.
    [5]JEDLI?SKI J J.The effect of alloyed and/or implanted yttrium on the mechanism of the scale development onβ-Ni Al at 1100℃[J].Materials at High Temperatures,2012,29(2):59-69.
    [6]GUO H B.Effect of Sm,Gd,Yb,Sc and Nd as reactive elements on oxidation behavior ofβ-Ni Al at 1200℃[J].Corrosion Science,2014,78:369-377.
    [7]XU C,PENG X,WANG FH.Cyclic oxidation of an ultrafine-grained and Ce O2-dispersedδ-Ni2Al3 coating[J].Corrosion Science,2010,52:740-747.
    [8]PENG X,LI M,WANG FH.A novel ultrafine-grained Ni3Al with increased cyclic oxidation resistance[J].Corrosion Science,2011,53:1616-1620.
    [9]PENG X,GUAN Y,DONG Z,et al.A fundamental aspect of the growth process of alumina scale on a metal with dispersion of Ce O2 nanoparticles[J].Corrosion Science,2011,53:1954-1959.
    [10]TAN X,PENG X,WANG F H,The mechanism for self-formation of a Ce O2 diffusion barrier layer in an aluminide coating at high temperautre[J].Surface Coating&Technology,2013,224:62-70.
    [11]TAN X,PENG X,WANG F H,The effect of grain refinement on the adhesion of an alumina scale on an aluminide coating[J].Corrosion Science,2014,85:280-286.
    [12]WANG X,PENG X,TAN X,et al.The reactive element effect of ceria particle dispesion on alumina growth[J].Scientific Reports,2016,6(511):29593.
    [13]HUANG Y,PENG X.The promoted for mation of anα-Al2O3 scale on a nickel aluminide with surface Cr2O3 particles[J].Corrosion Science,2016,112:226-232.
    [14]ZHENG L,YANG Z,ZHEN H,et al.Dual effects of co-electrodeposition of Ce O2nanoparticles on the grain growth of nanocrystalline Ni matrix[J].Journal of Materials Research,2017,32:1741-1747.
    [15]PENG X,WANG F.Oxidatio nresistant nanocrystalline coatings[M]//Development in high-temperature corrosion and protection of materials.Woodhead Pub.Ltd.,2008.
    [16]彭晓,王福会.纳米金属材料的高温腐蚀行为[J].金属学报,2014(2):202-211.PENG Xiao,WANG Fuhui.High-temperature corrosion behavior of nanocrystalline metallic materials[J].Acta Metallurgica Sinica,2014(2):202-211.
    [17]PENG X,LI T,PAN W P.Oxidation of a La2O3-modified aluminide coating[J].Scripta Materialia,2001,44:1033-1038.
    [18]谭晓晓.晶粒细化和氧化物掺杂对铝化物涂层高温氧化行为的影响[D].北京:中国科学院大学,2014.TAN Xiaoxiao.The effect of grain refinement and oxide incorporation on high temperature oxidation behavior of aluminide coatings[D].Beijing:University of Chinese Academy of Sciences,2014.
    [19]王小兰.典型合金初期氧化行为的TEM研究[D].合肥:中国科学技术大学,2016.WANG Xiaolan.TEM study on the initial oxidation behavior of typical alloys[D].Hefei:University of Sciences and Technology of China,2014.
    [20]LI Q,PENG X,ZHANG J,et al.Comparison of the oxidation of high-sulfur Ni-25Cr-5Al alloys in as-cast and as-sputtered states[J].Corrosion Science,2010,52:1221-1223.
    [21]PINT B A,HOBBS L W.Limitation on the use of ion-implantation for the study of the reactive element effect inβ-Ni Al[J].Journal of the Electrochemical Society,1994,141:2443-2453.
    [22]SCHUMANN E,YANG J C,RüHLEM,et al.High-resolution SIMS and analytical TEM evaluation of alumina scales on beta-Ni Al containing Zr or Y[J].Oxidation of Metals,1996,46:37-49.
    [23]PINT B A.Experimental observations in support of the dynamic segregation theory to explain the reactive element effect[J].Oxidation of Metals,1996,45(1-2):1-37.
    [24]PINT B A,HOBBS L W.The oxidation behavior of Y2O3-dispersedβ-Ni Al[J].Oxidation of Metals,2004,61:273-292.
    [25]PENG X,CLARKE D R,WANGF H.Transient-alumina transformation during the oxidation of magnetron-sputtered Co Cr Al nanocrystalline coatings[J].Oxidation of Metals,2003,60:225-240.
    [26]谭晓晓,彭晓.一种可内生Al2O3扩散障的δ-Ni2A l3-C r2O3/N i-C r2O3涂层体系[J].腐蚀科学与防护技术,2015,27(1):49-53.TAN Xiaoxiao,PENG Xiao.Aδ-Ni2Al3-Cr2O3/Ni-Cr2O3 coating system with ability of self-formation of a diffusion barrier of Al2O3 at high temperature[J].Corrosion Science and Protection Technology,2015,27(1):49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700