靶源位置对强场高次谐波相位匹配的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of target position on phase matching in high-order harmonic generation
  • 作者:王超 ; 康轶凡 ; 白永林 ; 王屹山 ; 徐鹏 ; 王向林
  • 英文作者:Wang Chao;Kang Yifan;Bai Yonglin;Wang Yishan;Xu Peng;Wang Xianglin;Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology,Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences;School of Science,Air Force Engineering University;State Key Laboratory of Transient Optics and Photonics,Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences;
  • 关键词:极端非线性光学 ; 高次谐波产生 ; 相位匹配 ; 孤立阿秒脉冲 ; 气体靶
  • 英文关键词:extreme nonlinear optics;;high-order harmonic generation;;phase matching;;isolated attosecond pulse;;gas target
  • 中文刊名:QJGY
  • 英文刊名:High Power Laser and Particle Beams
  • 机构:中国科学院西安光学精密机械研究所中科院超快诊断技术重点实验室;空军工程大学理学院;中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室;
  • 出版日期:2018-10-24 16:10
  • 出版单位:强激光与粒子束
  • 年:2018
  • 期:v.30;No.256
  • 基金:国家自然科学基金项目(11675258; 61690222; 11505289);; 中国科学院国家外国专家局创新团队国际合作伙伴计划项目
  • 语种:中文;
  • 页:QJGY201810003
  • 页数:4
  • CN:10
  • ISSN:51-1311/O4
  • 分类号:9-12
摘要
为提高强激光场与惰性气体靶作用产生的孤立阿秒激光脉冲的能量,给出了一种实现高次谐波过程中最佳谐波相位匹配的定量实验方法。研究了气体靶源与高斯型驱动激光场聚焦点相对空间位置对谐波相位匹配及谐波产率的影响,得出了其最佳相位匹配位置始终位于驱动激光场聚焦点后3!5 mm,而在聚焦点之前的位置区域,严重的高次谐波相位失配导致谐波产率非常低。同时,在最佳相位匹配条件下,高次谐波场与驱动场具有相类似的空间强度分布特性,该结果印证了目前通常采用的高次谐波场为高斯光束的假设。
        This paper presents an experimental method to realize the best high-order harmonic generation( HHG) phase matching in the interaction of strong optical field and gas target. By studying the effects of the relative location between gas target source and Gaussian-type driving field focus on the harmonic phase matching,conclusions are obtained that the optimum position of gas target for phase matching is always 3-5 mm behind the focal point of the driving field,with much lower HHG yield before the focus caused by serious harmonic phase mismatch. At the same time,in the optimum relative position,the driving field and the high-order harmonic field have similar spatial distribution characteristics,providing the experimental basis for the commonly used assumptions of Gaussian beam for high-order harmonic field.
引文
[1]周洪军,钟鹏飞,郑津津,等.不同厚度Al滤片对17~33 nm高次谐波抑制的定量研究[J].光学精密工程,2007,15(7):1016-1020.(Zhou Hongjun,Zhong Pengfei,Zheng Jinjin,et al. Quantitative research on higher order harmonic suppression in 17~33 nm with different thickness Al filters. Optics and Precision Engineering,2007,15(7):1016-1020)
    [2]卢发铭,张盛,夏元钦,等.双色飞秒强激光作用下的CO2分子高次谐波[J].红外与激光工程,2014,43(1):77-80.(Lu Faming,Zhang Sheng,Xia Yuanqin,et al. High harmonic generation in CO2using two-color femtosecond laser. Infrared and Laser Engineering,2014,43(1):77-80)
    [3]秦沛,任玉,刘丽炜,等.金属纳米颗粒等离激元共振增强非线性介质谐波的发展现状[J].中国光学,2016,9(2):213-225.(Qin Pei,Ren Yu,Liu Liwei,et al. Development of plasmon-resonance of metal nanoparticles enhanced harmonic generation in nonlinear medium. Chinese Optics,2016,9(2):213-225)
    [4]龚梓博,陆星,施可彬,等.光学频率梳非线性传输及其在相位噪声探测中的应用[J].中国光学,2015,8(1):39-44(Gong Zibo,Lu Xing,Shi Kebin,et al. Nonlinear propagation of optical frequency comb and its application in phase noise detection. Chinese Optics,2015,8(1):39-44)
    [5] Krausz F,Ivanov M. Attosecond physics[J]. Review of Modern Physics,2009,81(1):163-234.
    [6] Calegari F,Ayuso D,Trabattoni A,et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses[J]. Science,2014,346(6207):336-339.
    [7] Despre V,Marciniak A,Loriot V,et al. Attosecond hole migration in Benzene molecules surviving nuclear motion[J]. The Journal of Physical Chemistry Letters,2015,6:426-431.
    [8]李儒新,程亚,冷雨欣,等.超快光学与超强激光技术前沿研究[J].中国科学:信息科学,2016,46(9):1236-1254.(Li Ruxin,Cheng Ya,Leng Yuxin,et al. Frontiers in ultrafast optics and ultra-intense laser technology. Scientia Sinica Informationis,2016,46(9):1236-1254)
    [9] Goulielmakis E,Schultze M,Hofstetter M,et al. Single-cycle nonlinear optics[J]. Science,2008,320(5883):1614-1617.
    [10] Ferrari F,Calegari F,Lucchini M,et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields[J]. Nature Photon,2010,4(12):875-879
    [11] Sansone G,Benedetti E,Calegari F,et al. Isolated single-cycle attosecond pulses[J]. Science,2006,314(5798):443-446.
    [12] Zhao K,Zhang Q,Chini M,et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch[J]. Optics Letters,2012,37(18):3891-3893.
    [13] Feng X,Gilbertson S,Mashiko H,et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers[J]. Physical Review Letters,2009,103:183901.
    [14] Vincenti H,Quere F. Attosecond lighthouses:how to use spatiotemporally coupled light fields to generate isolated attosecond pulses[J]. Physical Review Letters,108(11):113904.
    [15] Corkum P B. Plasma perspective on strong-field multiphoton ionization[J]. Physical Review Letters,1993,71(13):1994-1997.
    [16] Saleeres P,L'Huilier A,Lewenstein M. Coherence control of high-order harmonics[J]. Physical Review Letters,1995,74(19):3776-3779.
    [17] Gragossian A,Seletskiy D V,Sheik-Bahae M. Classical trajectories in polor-asymmetric laser fields:synchronous THz and XUV emission[J]. Scientific Reports,2016,6:34973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700