啁啾相移光纤光栅分布式应变与应变点精确定位传感研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phase shift chirped fiber Bragg grating based distributed strain and position sensing
  • 作者:裴丽 ; 吴良英 ; 王建帅 ; 李晶 ; 宁提纲
  • 英文作者:Pei Li;Wu Liang-Ying;Wang Jian-Shuai;Li Jing;Ning Ti-Gang;Key Laboratory of All Optical Network and Advanced Telecommunication Network of EMC, Institute of Lightwave Technology,Beijing Jiaotong University;
  • 关键词:精确定位传感 ; 啁啾相移光纤光栅 ; 应变
  • 英文关键词:precise position sensing;;chirped phase shift fiber Bragg grating;;strain
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室;
  • 出版日期:2017-03-07 13:19
  • 出版单位:物理学报
  • 年:2017
  • 期:v.66
  • 基金:国家自然科学基金(批准号:61525501)资助的课题~~
  • 语种:中文;
  • 页:WLXB201707002
  • 页数:9
  • CN:07
  • ISSN:11-1958/O4
  • 分类号:19-27
摘要
利用啁啾相移光纤光栅狭缝的中心波长对应变点和应变量的波长敏感性,实现应变与应变点精确定位的传感.当啁啾光纤光栅上的某一位置产生微应变时,该应变点会产生相移,其频谱则会出现一个与之对应的狭缝,且狭缝的深度和中心波长与应变的大小和位置相关.当串接不同中心波长的啁啾光纤光栅后,即可实现一定范围内的分布式应变与应变点精确定位检测.本文通过V-I传输矩阵法建立了狭缝深度和中心波长关于应变量和应变位置的理论模型,分析结果表明理论上可以实现微米量级的精确定位.搭建了级联啁啾相移光纤光栅的分布式应变传感装置,实验获得的最大应变灵敏度为0.19 pm/με.该精确定位传感装置在先进制造、精密加工、航空航天、铁路系统等高新技术领域具有重要的应用前景.
        A corresponding peak appears on the transmission spectrum, when the micro-strain is induced in a chirped fiber Bragg grating(CFBG). The center wavelength of the peak is sensitive to the location and magnitude of the strain,thus, the CFBG can be used in distributed strain and strain-points precise position sensing. The depth and center wavelength of the peak are determined by the magnitude and location of the strain. The cascaded CFBGs under different center wavelengths can realize the distributed strain and strain-point precise positioning. Considering the fact that the depth and center wavelength of the peak are related to the magnitude and location of strain, a theoretical model is established with V-I transmission matrix formalism. Theoretically, cascaded CFGBs can realize accurately the positioning of micron-scale. Experimentally, two CFBGs are cascaded and a sensitivity of 0.19 pm/με is obtained. The proposed precise position sensing can be applied to the fields of advanced manufacturing, precision machining, aerospace,railway-system, etc.
引文
[1]Morey W W,Meltz G,Glenn W H 1989 Proc.SPIE1169 98
    [2]Patrick H J,Williams G M,Kersey A D,Pedrazzani J R,Vengsarkar A M 1996 IEEE Photon.Tech.L.8 1223
    [3]Liang W,Huang Y,Xu Y,Lee R K,Yariv A 2005 Appl.Phys.Lett.86 151122
    [4]Guan B O,Tam H Y,Tao X M,Dong X Y 2000 IEEE Photon.Tech.L.12 675
    [5]Cai Z,Liu F,Guo T,Guan B O,Peng G D,Albert J2015 Opt.Express 23 20971
    [6]Chryssis A N,Lee S M,Lee S B,Saini S S,Dagenais M2005 IEEE Photon.Tech.L.17 1253
    [7]Laudati A,Mennella F,Esposito M,Cusano A,Giordano M,Breglio G,Sorge S,Calisti T C,Torre A,D’Altrui G,Cutolo A 2007 Proc.SPIE 6619 66191C
    [8]Fujihashi K,Aoki T,Okutsu M,Arai K,Komori T,Fujita H,Kurosawa Y,Fujinawa Y,Sasaki K 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies IEEE 349
    [9]Capoluongo P,Ambrosino C,Campopiano S,Cutolo A,Giordano M,Bovio I,Lecce L,Cusano A 2007 Sensor Actuat.A:Phys.133 415
    [10]Chan T H T,Yu L,Tam H Y,Ni Y Q,Liu S Y,Chung W H,Cheng L K 2006 Eng.Struct.28 648
    [11]Schulz W L,Conte J P,Udd E 2001 Proc.SPIE 433056
    [12]Chen X,Painchaud Y,Ogusu K,Li H 2010 J.Lightwave Technol.28 2017
    [13]Xian L,Li H 2013 J.Lightwave Technol.31 1185
    [14]Wu L Y,Pei L,Liu L,Wang J S 2016 Opt.Laser Technol.79 15
    [15]Capmany J,Muriel M A,Sales S,Rubio J J,Pastor D2003 J.Lightwave Technol.21 3125
    [16]Victor G M,Muriel M A,Capmany J 2005 IEEE Photon.Tech.L.17 2343
    [17]Ning T G,Fu Y J,Tan Z W,Liu Y,Pei L,Jian S S 2004Chin.J.Lasers 31 77(in Chinese)[宁提纲,傅永军,谭中伟,刘艳,裴丽,简水生2004中国激光31 77]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700