圆形杂质对裂纹扩展的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Circular Inhomogeneity on Crack Propagation
  • 作者:邢帅兵 ; 王强胜 ; 生月 ; 江晓禹
  • 英文作者:XING Shuaibing;WANG Qiangsheng;SHENG Yue;JIANG Xiaoyu;School of Mechanics and Engineering,Southwest Jiaotong University;
  • 关键词:杂质 ; 裂纹 ; 分布位错方法 ; 裂纹扩展
  • 英文关键词:inhomogeneity;;crack;;distributed dislocation technique;;crack propagation
  • 中文刊名:YYSX
  • 英文刊名:Applied Mathematics and Mechanics
  • 机构:西南交通大学力学与工程学院;
  • 出版日期:2019-01-18 09:32
  • 出版单位:应用数学和力学
  • 年:2019
  • 期:v.40;No.437
  • 基金:国家自然科学基金(11472230)~~
  • 语种:中文;
  • 页:YYSX201902007
  • 页数:11
  • CN:02
  • ISSN:50-1060/O3
  • 分类号:79-89
摘要
在单轴拉伸载荷作用下,运用分布位错方法对无限大平面内含有一个裂纹和一个任意方向的杂质问题进行求解,得到了裂纹尖端的应力强度因子、应力场以及应变能密度.利用最小应变能密度因子准则来判断裂纹扩展方向.结果显示:软杂质对裂纹尖端应力强度因子、应变能密度和应力场有增强作用,而硬杂质则具有屏蔽作用.在-30!<θ<30!范围内,杂质对裂纹扩展方向的影响较小,而在-90!<θ<-30!或30!<θ<90!范围内,杂质对裂纹扩展方向的影响较大.软杂质对裂纹扩展有吸引作用,而硬杂质具有排斥作用.
        The solution of an infinite plane containing a crack and an arbitrarily oriented inhomogeneity under uniaxial tensile load was presented based on the distributed dislocation technique.The stress field and the strain energy density were obtained.The crack propagation direction was predicted according to the minimum strain energy density criterion.The results show that,the soft inhomogeneity has an amplifying effect on the stress intensity factor,the strain energy density and the stress field near the crack tip,while the hard inhomogeneity has a shielding effect.The effect of the inhomogeneity on the crack propagation direction increases with the decreasing distance,the increasing absolute value of lg(μ2/μ1),and the increasing inhomogeneity radius.The inhomogeneity has a little effect on the crack propagation direction for -30°<θ<30°.The soft inhomogeneity has an attracting effect,while the hard inhomogeneity has a repulsing effect on the crack propagation for -90°<θ<-30° and 30°<θ<90°.
引文
[1]HAN J J,DHANASEKAR M.Modelling cracks in arbitrarily shaped finite bodies by distribution of dislocation[J].International Journal of Solids&Structures,2004,41(2):399-411.
    [2]段士杰,刘淑红.剪切荷载作用下圆孔孔边裂纹的解[J].应用数学和力学,2016,37(7):740-747.(DU AN Shijie,LIU Shuhong.Solutions for a circluar hole w ith edge cracks under shear load[J].A pplied Mathematics and Mechanics,2016,37(7):740-747.(in C hinese))
    [3]LI Z,CHEN Q.Crack-inclusion interaction for mode I crack analyzed by Eshelby equivalent inclusion method[J].International Journal of Fracture,2004,118(1):29-40.
    [4]张明焕,汤任基,裂纹与弹性夹杂的相互影响[J].应用数学和力学,1995,16(4):289-300.(ZHANG Minghuan,TANG Renji.Interaction between crack and elastic inclusion[J].Applied Mathematics and Mechanics,1995,16(4):289-300.(in C hinese))
    [5]杨立宏.裂纹与任意形状夹杂相互作用的近似解法[D].博士学位论文.上海:上海交通大学,2005.(YAN G Lihong.Approximate solution of interaction betw een crack and inclusion of arbitrary shape[D].PhD T hesis.Shanghai:Shanghai Jiao T ong U niversity,2005.(in C hinese))
    [6]MOGILEVSKAYA S G,CROUCH S L,BALLARINI R,et al.Interaction between a crack and a circular inhomogeneity w ith interface stiffness and tension[J].International Journal of Fracture,2009,159:191-207.
    [7]周荣欣.裂纹与夹杂之间的构型力及Ⅱ型裂纹裂尖塑性区的屏蔽效应[D].硕士学位论文.上海:上海交通大学,2012.(ZHOU Rongxin.The configuration force between crack and inclusion&the shielding effects of plastic zone at mode II crack-tip[D].M aster T hesis.Shanghai:Shanghai Jiao T ong U niversity,2012.(in C hinese))
    [8]YANG R,XU P,YUE Z,et al.Dynamic fracture analysis of crack-defect interaction for mode I running crack using digital dynamic caustics method[J].Engineering Fracture Mechanics,2016,161:63-75.
    [9]XIAO Z M,BAI J,MAEDA R.Electro-elastic stress analysis on piezoelectric inhomogeneity-crack interaction[J].International Journal of Solids&Structures,2001,38(8):1369-1394.
    [10]PENG B,LI Z,FENG M.The mode I crack-inclusion interaction in orthotropic medium[J].Engineering Fracture Mechanics,2015,136:185-194.
    [11]CHEN Y Z.Solution for a crack embedded in thermal dissimilar elliptic inclusion[J].Engineering Fracture Mechanics,2016,160:15-21.
    [12]DUNDURS J,MURA T.Interaction between an edge dislocation and a circular inclusion[J].Journal of the Mechanics&Physics of Solids,1964,12(3):177-189.
    [13]WANG X,SCHIAVONE P.Interaction between an edge dislocation and a circular inhomogeneity w ith a mixed-type imperfect interface[J].A rchive of A pplied Mechanics,2017,87(1):87-98.
    [14]WANG C C,ZHAO Y X,ZHANG Y B,et al.The interaction between an edge dislocation and a semi-infinite long crack penetrating a circular inhomogeneity[J].Theoretical&A pplied Fracture Mechanics,2015,76:91-99.
    [15]TAO Y S,FANG Q H,ZENG X,et al.Influence of dislocation on interaction between a crack and a circular inhomogeneity[J].International Journal of Mechanical Sciences,2014,80:47-53.
    [16]陈勇,宋迎东,高德平.圆形夹杂前端直裂纹的应力强度因子研究[C]//中国航空学会发动机结构强度振动学术讨论会.威海,2002.(CHEN Yong,SONG Yingdong,GAO Deping.Study on stress intensity factor of straight crack in front end of circular inclusion[C]//Symposium on Strength V ibration of Engine Structure of C hina A eronautics Society.W eihai,2002.(in C hinese))
    [17]TAMATE O.The effect of a circular inclusion on the stresses around a line crack in a sheet under tension[J].International Journal of Fracture Mechanics,1968,4(3):257-266.
    [18]ZHANG J,QU Z,HUANG Q,et al.Interaction between cracks and a circular inclusion in a finite plate w ith the distributed dislocation method[J].A rchive of A pplied Mechanics,2013,83(6):861-873.
    [19]ERDOGAN F,GUPTA G D,RATWANI M.Interaction between a circular inclusion and an arbitrarily oriented crack[J].Journal of A pplied Mechanics,1975,41(4):1287-1297.
    [20]ERDOGAN F,SIH G C.On the crack extension in plates under plane loading and transverse shear[J].Journal of Basic Engineering,1963,85(4):519-525.
    [21]PALANISWAMY K,KNAUSS W G.Propagation of a crack under general,in-plane tension[J].International Journal of Fracture Mechanics,1972,8(1):114-117.
    [22]NUISMER R J.An energy release rate criterion for mixed mode fracture[J].International Journal of Fracture,1975,11(2):245-250.
    [23]LI C.Vector ctd criterion applied to mixed mode fatigue crack growth[J].Fatigue&Fracture of Engineering Materials&Structures,1989,12(1):59-65.
    [24]SIH G C.Strain-energy-density factor applied to mixed mode crack problems[J].International Journal of Fracture,1974,10(3):305-321.
    [25]HILLS D A,KELLY P A,DAI D N,et al.Solution of crack problems:the distributed dislocation technique[J].Journal of A pplied Mechanics,1996,65(2):548.
    [26]ERDOGAN F,GUPTA G D,COOK T S.Numerical solution of singular integral equations[M]//Methods of A nalysis and Solutions of C rack Problems.N etherlands:Springer,1973:368-425.
    [27]KAYA A C,ERDOGAN F.On the solution of integral equations with strongly singular kernels[J].Q uarterly of A pplied Mathematics,1987,45(1):105-122.
    [28]MIRANDA A C O,MEGGIOLARO M A,CASTRO J T P,et al.Fatigue life and crack path predictions in generic 2D structural components[J].Engineering Fracture Mechanics,2003,70(10):1259-1279.
    [29]CHUDNOVSKY A,CHAOUI K,MOET A.Curvilinear crack layer propagation[J].Journal of Materials Science Letters,1987,6(9):1033-1038.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700