用户名: 密码: 验证码:
动力翼伞系统耦合补偿控制策略研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control Strategy of Power Parafoil System Based on Coupling Compensation
  • 作者:檀盼龙 ; 罗淑贞 ; 孙青林
  • 英文作者:TAN Pan-long;LUO Shu-zhen;SUN Qing-lin;Intelligent Manufacturing College, Tianjin Sino-German University of Applied Sciences;College of Computer and Control Engineering, Nankai University;
  • 关键词:强耦合 ; 动力翼伞系统 ; 扩张状态观测器 ; 耦合补偿 ; 横向轨迹跟踪
  • 英文关键词:strong coupling;;powered parafoil system;;extended state observer;;coupling compensation;;lateral trajectory tracking
  • 中文刊名:BJLG
  • 英文刊名:Transactions of Beijing Institute of Technology
  • 机构:天津中德应用技术大学智能制造学院;南开大学计算机与控制工程学院;
  • 出版日期:2019-04-15
  • 出版单位:北京理工大学学报
  • 年:2019
  • 期:v.39;No.290
  • 基金:国家自然科学基金资助项目(61273138);; 天津市重点基金资助项目(14JCZDJC39300);; 天津市教委科研计划资助项目(2017KJ044);; 天津市自然科学基金资助项目(17JCYBJC16800)
  • 语种:中文;
  • 页:BJLG201904008
  • 页数:6
  • CN:04
  • ISSN:11-2596/T
  • 分类号:52-57
摘要
动力翼伞系统是具有强非线性、强耦合特性的系统,其精确控制比较困难.动力翼伞系统具有两个控制通道,控制的难度在于纵向推力对下偏控制存在着非线性的强耦合作用,在受到风场干扰时会导致系统耦合加剧,从而在控制过程中引起较大偏差,甚至导致系统失速.本文提出了一种基于耦合补偿的自抗扰控制策略,并将该非线性耦合关系设计为扩张状态观测器中的已知扰动,从而提高了控制器的跟踪性能.在动态耦合补偿的基础上改进控制律,将非线性动力翼伞系统设计成易于控制的独立积分器,从而提高横向轨迹跟踪控制器的抗干扰性和控制跟踪性能.通过仿真实验可验证该控制策略优于传统的自抗扰控制(active disturbances rejection controller,ADRC)和PID控制.
        Powered parafoil system is strongly nonlinear and contains complicated cross-coupling characteristic, which makes the system hard to control. Under the variable wind disturbance, this coupling influence will aggravate the control performance, probably resulting in large deviations or instability in the control process. An active disturbance rejection control(ADRC) strategy based on the coupling compensation was proposed. The dynamic cross-coupling relation of the longitudinal thrust on the lateral yaw control was designed as the known disturbance of extended state observer(ESO) to be compensated in the improved control law, so that the tracking ability of the controller could be enhanced. Moreover, under the cross-coupling compensation, a complex nonlinear powered parafoil system was constructed as integrators which could be easily controlled, such that the tracking precision and disturbance rejection capacity of the lateral controller were improved. Eventually, mathematical simulations demonstrate that the proposed control approach has better tracking performance and robustness compared with the conventional ADRC and PID.
引文
[1] 檀盼龙,孙青林,陈增强.自抗扰技术在动力翼伞轨迹跟踪控制中的应用[J].浙江大学学报:工学版,2017,51(5):992-999.Tan Panlong,Sun Qinglin,Chen Zhengqiang.Application of active disturbance rejection control in trajectory tracking of powered parafoil system [J].Journal of Zhejiang University:Engineering ed,2017,51(5):992-999.(in Chinese)
    [2] Zhu E L,Sun Q L,Tan P L,et al.Modeling of powered parafoil based on Kirchhoff motion equation [J].Nonlinear Dynamics,2015,79(1):617-629.
    [3] Aoustin Y,Martynenko Y.Control algorithms of the longitude motion of the powered paraglider [C]//Proceedings of ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis.[S.l.]:American Society of Mechanical Engineers,2012:775-784.
    [4] Ochi Y,Kondo H M.Linear dynamics and PID flight control of a powered paraglider[C]//Proceedings of AIAA Guidance,Navigation,and Control Conference.Chicago,USA:AIAA,2009:6318-6325.
    [5] Slegers N,Costello M.Model predictive control of a parafoil and payload system [J].Journal of Guidance Control Dynamics,2005,28:816-821.
    [6] Tao J,Sun Q L,Tan P L,et al.Autonomous homing control of a powered parafoil with insufficient altitude [J].ISA Transactions,2016,65:516-524.
    [7] Tao J,Sun Q L,Tan P L,et al.Active disturbance rejection control (ADRC)-based autonomous homing control of powered parafoils[J].Nonlinear Dynamics,2016,86(3):1461-1476.
    [8] Tan P L,Sun Q L,Jiang Y X,et al.Trajectory tracking of powered parafoil based on characteristic model based all-coefficient adaptive control [J].Journal of Central South University,2017,24(5):1073-1081.
    [9] Luo S Z,Tan P L,Sun Q L,et al.In-flight wind identification and soft landing control for autonomous unmanned powered parafoils [J].International Journal of Systems Science,2018,49(5):929-946.
    [10] Luo S Z,Sun Q L,Wu W N,et al.Accurate flight path tracking control for powered parafoil aerial vehicle using ADRC-based wind feed-forward compensation[J].Aerospace Science and Technology,2018,84:904-915.
    [11] Luo S Z,Sun Q L,Tan P L,et al.Soft landing control of unmanned powered parafoils in unknown wind environments[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2018,1:12-18.
    [12] Lissaman P,Glen B.Apparent mass effects on parafoil dynamics[C]//Proceedings of Aerospace Design Conference.[S.l.]:AIAA,1993:12-36.
    [13] Altmann H.Influence of wind on terminal guidance and landing precision of autonomous parafoil systems [C]//Proceedings of AIAA Aerodynamic Decelerator Systems (ADS) Conference.[S.l.]:AIAA,2013.
    [14] Brandon L,Aaron E,Jonathan P,et al.Wind uncertainty modeling and robust trajectory planning for autonomous parafoils [J].Journal of Guidance,Control,and Dynamics,2016,39(7):1614-1630.
    [15] Adelfang O,Smith S.Gust models for launch vehicle ascent [C]//Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit.[S.l.]:AIAA,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700