羊栖菜组分多糖对α-葡萄糖苷酶的抑制作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Inhibition of Polysaccharide Fraction of Sargassum fusiforme on the α-glucosidase
  • 作者:丁浩淼 ; 孙弢 ; 夏彭奎 ; 汤倩 ; 王忠华 ; 汪财生 ; 陈海敏 ; 钱国英
  • 英文作者:DING Haomiao;SUN Tao;XIA Pengkui;TANG Qian;WANG Zhonghua;WANG Caisheng;CHEN Haimin;QIAN Guoying;School of Marine Sciences, Ningbo University;College of Biological and Environmental Sciences, Zhejiang Wanli University;
  • 关键词:羊栖菜 ; 组分多糖 ; α-葡萄糖苷酶 ; 抑制动力学 ; 荧光分析 ; Caco-2细胞
  • 英文关键词:Sargassum fusiforme;;polysaccharide fraction;;α-glucosidase;;inhibition kinetics;;fluorescent analysis;;Caco-2 cell
  • 中文刊名:HNXB
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:宁波大学海洋学院;浙江万里学院生物与环境学院;
  • 出版日期:2018-12-20 07:00
  • 出版单位:核农学报
  • 年:2019
  • 期:v.33
  • 基金:浙江省重中之重学科“生物工程”创新项目(CX2017001)
  • 语种:中文;
  • 页:HNXB201902013
  • 页数:8
  • CN:02
  • ISSN:11-2265/S
  • 分类号:95-102
摘要
为高效利用羊栖菜组分多糖(SFPSⅠ),以SFPSⅠ为原料,α-葡萄糖苷酶作为靶标,研究SFPSⅠ对α-葡萄糖苷酶的抑制作用及其结构的影响,建立具有α-葡萄糖苷酶活性的Caco-2细胞模型,并对Caco-2细胞模型上α-葡萄糖苷酶活性的抑制效果进行研究。结果表明,SFPSⅠ对α-葡萄糖苷酶有明显的抑制作用,使得α-葡萄糖苷酶活力下降一半时的抑制剂浓度,即半抑制(IC_(50))为0.31 mg·mL~(-1)。SFPSⅠ对α-葡萄糖苷酶的抑制作用是一个可逆过程,抑制类型为混合型抑制。动力学分析结果表明,SFPSⅠ对α-葡萄糖苷酶的抑制常数(K_i)为0.143μmol·L~(-1)。荧光测定结果表明,SFPSⅠ结合会引起α-葡萄糖苷酶三级结构的明显变化。随着SFPSⅠ浓度的升高,其对Caco-2细胞模型上α-葡萄糖苷酶抑制效果越好。本研究结果为进一步探讨和设计新型α-葡萄糖苷酶抑制剂奠定了科学基础,同时也为开发具有降血糖功能的功能性药品与保健品提供了新资源。
        To efficienty use the Sargassum fusiforme polysaccharide(SFPS Ⅰ), studyed the inhibitory effect of the polysaccharide fraction from Sargassum fusiforme on the activity and structure of α-glucosidase while SFPS Ⅰwas as a raw material and α-glucosidase was as a target. To investigate the inhibitory effect of α-glucosidase activity on the Caco-2 cell model, a Caco-2 cell model with α-glucosidase activity was established. The results showed that SFPS Ⅰcould obviously inhibit the activity of α-glucosidase. The inhibitory concentration leadingto 50% activity lost(IC_(50)) was estimated to be 0.31 mg·mL~(-1). SFPS Ⅰwas a reversible inhibitor of α-glucosidase. Lineweaver-Burk plots indicated that SFPS Ⅰwas a mixed-type inhibitor, and its inhibition constant K_i was 0.143 μmol·L~(-1). Endogenous fluorescence and ANS-binding fluorescence test of α-glucosidase indicated that SFPS Ⅰcombined with the α-glucosidase caused significant changes in the structure. The higher the SFPS Ⅰconcentration, the more significant the inhibition to the α-glucosidase of Caco-2 cell model. The results of this study provide a scientific basis for the design and development of new inhibitors in the future and the new resources for further development of the hypoglycemic pharamaceutical intermediates or functional foods.
引文
[1] Almajano M P, Carbo R, Jimenez J A L, Gordon M H. Antioxidant and antimicrobial activities of tea infusions[J]. Food Chemistry, 2008, 108(1): 55-63
    [2] Tsuchiya Y, Kawamata K, Tomita M. Effect of salmon nasal cartilage proteoglycan on plasma glucose concentration and avtive glucose transport in the small intestine[J]. Journal of Nutritional, 2015, 61(6): 502-505
    [3] Li Q, Li W, Gao Q, Zou Y. Hypoglycemic effect of Chinese Yam(Dioscorea opposita rhizoma) in different structure and molecular weight[J]. Journal of Food Science, 2017,82(10): 2487-2494
    [4] Wu H, Liu Q, Lou Q, Liu J, Shen L, Zhang M, Lv X, Gu M, Guo X. Comparative assessment of the efficacy and safety of acarbose and metformin combined with premixed insulin in patients with type 2 diabetes mellitus[J]. Medicine, 2017, 96(35): 1-5
    [5] Abdul Q A, Choi R J, Jung H A. Health benefit of fucosterol from marine algae: a review[J]. Journal of the Science of Food and Agriculture, 2016, 96(6): 1856-1866
    [6] Proenca C, Freitas M, Ribeiro D, Oliveira E F T, Sousa J L C, Tome S M, Ramos M J, Sliva A M S, Fernandes P A, Fernandes E. α- Glucosidase inhibition by flavonoids: an in vitro and in silico structure-activity relationship study[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32(1): 1216-1228
    [7] 孙瑜, 丁国芳, 徐银峰. 海洋褐藻羊栖菜中马尾藻甾醇、盐藻甾醇的分类纯化及抗菌、抗氧化活性研究[J]. 海洋与湖沼, 2017, 48(3): 640-646
    [8] Xie X J, Wang X L, Lin L D, He L W, Gu W H, Gao S, Yan X F, Pan G H, Wu M J. Effects of hypo- and hypersalinnity on photosynthetic performance of Sargassum fusiform(Fucales, Heterokontophyta)[J]. Photosynthetica, 2016, 54(2): 210-218
    [9] Elena E P, Lin X D, Karen D. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 dusion and reverse transceiptase[J]. Virology Journal, 2008, 5(8): 1-9
    [10] 于竹芹, 于雪莲, 李生尧, 王苏, 段德麟. 羊栖菜对四氧嘧啶糖尿病模型小鼠血糖水平影响[J]. 青岛大学医学院学报, 2011, 47(1): 28-30
    [11] 张华芳. 羊栖菜提取物的降血糖作用研究[J]. 时珍国医药, 2006(2): 305-306
    [12] 张杰, 杨旭东, 杨骄霞, 詹必勋, 石杰, 金相赞. 羊栖菜多糖对糖尿病大鼠胰岛β细胞葡萄糖转运蛋白-2表达的影响[J]. 中国食物与营养, 2014, 20(9): 76-78
    [13] 丁浩淼, 李伟强, 汪财生, 顾筱筱, 谢琰, 钱国英, 王忠华. 羊栖菜活性组分多糖的体外抗氧化能力比较[J]. 核农学报, 2016, 30(5): 920-925
    [14] Zhang X, Shi L, Li X, Sheng Q, Yao L, Shen D, Lu Z R, Zhou H M, Park Y D, Lee J, Zhang Q. Effect of Ca2+ on the activity and structure of α-glucosidase: inhibition kinetics and molecular dynamics simulations[J]. Journal of Bioscience and Bioengineering, 2014, 117(6): 696-705
    [15] 张捷, 陈忠浩, 叶森, 斯越秀, 李彩燕. 羊栖菜多糖提取物对酪氨酸酶的抑制作用研究[J]. 食品工业科技, 2012, 33(20): 116-120
    [16] Wang Z J, Lee J, Si Y X, Oh S, Yang J M, Shen D, Qian G Y, Yin S J. Toward the inhibitory effect of acetylsalicylic acid on tyrosinase: integrating kinetics studies and computational simulations[J]. Process Biochemistry, 2013, 48(2): 260-266
    [17] Jin Q X, Yin S J, Wang W, Wang Z J, Yang J M, Qian G Y, Si Y X, Park Y D. The effect of Zn2+ on Euphausia superba arginine kinase: Unfolding and aggregation studies[J]. Process Biochemistry, 2014, 49(2): 821-829
    [18] Hu W J, Li Y, Park D, Jeong H O, Chung H Y, Yang J M, Ye Z M, Qian G Y. Kinetic, structural and molecular docking studies on the inhibition of tyrosinase induced by arabinose[J]. International Journal of Biological Macromolecules, 2012, 50(3): 694-700
    [19] Ai L Z, Chung Y C, Jeng K C G, Lai P F H, Yeh S C, Lee K C, Lin S Y, Xia Y J, Wang G Q, Cui S W. Antioxidant hydrocolloids from herb Graptopetalum paraguayense leaves show anti-neuroinflammatory potentials[J]. Food Hydrocolloids, 2017, 73(1): 51-59
    [20] Liu S Y, Ai Z Y, Qu F F, Chen Y Q, Ni D J. Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α- amylase, α- glucosidase and intestinal glucose uptake[J]. Food Chemistry, 2017, 234(2): 168-173
    [21] Wang H, Yu Q, Nie S P, Xiang Q D, Zhao M M, Liu S Y, Xie M Y, Wang S Q. Polysaccharide purified from Ganoderma atrum induced activation and maturation of murine myeloid-derived dendritic cells[J]. Food and Chemical Toxicology, 2017, 108(3): 478-485
    [22] Di W, Zhang L W, Wang S M, Yi H X, Han X, Fan R B, Zhang Y C. Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus cadei SB27 from yak milk[J]. Carbohydrate Polymers, 2017, 171(9): 307-315
    [23] Li S Q, Shah N P. Sulphonated modification of polysaccharides from Pleurotus enyngii and Streptococcus thermophilus ASCC 1275 and antioxidant activities investigation using CCD and Caco-2 cell line models[J]. Food Chemistry, 2017, 225(6): 246-257
    [24] Ren L P, Li J J, Xiao Y Y, Zhang Y Y, Fan J F, Zhang J F, Wang L Y, Shen X D. Polysaccharide from Lycium barbarum L. leaves enhances absorption of endogenous calcium, and elevates cecal calcium transport protein levels and serum cytokine levels in rats[J]. Journal of Functional Foods, 2017, 33(3): 227-234
    [25] Cai H Z, Yang X H, Cai Q, Ren B B, Qiu H Y, Yao Z Q. Lycium barbarum L. Polysaccharide(LBP) reduces glucose uptake via down-regualation of SGLT-1 in Caco-2 cell[J]. Molecules, 2017, 22(2): 1-12
    [26] 夏毅伟. 桃胶多糖降血糖机制研究[D]. 广州: 南方医科大学, 2013: 15-16
    [27] Mihiri M, Estelle L, Senay S. Arabinoxylan hydrolyzates as immunomodulators in Caco-2 and HT-29 colon cancer cell lines[J]. Food and Function, 2017, 8(1): 220-231
    [28] Wang Y F, Wang J, Wu J, Xu P, Wang Y Q, Gao J J, Hochstetter D. In vitro antioxidant activity and potential inhibitory action against α-glucosidase of polysaccharides from fruit peel of tea(Camellia sinensis L.)[J]. Biomedicine and Biotechnology, 2014, 15(2): 173-180
    [29] 刘薇薇, 刘旭, 曹学丽, 罗晶洁. 白背三七多糖的结构表征及α-葡萄糖苷酶的抑制活性[J]. 食品科学, 2013, 34(7): 115-120
    [30] 田丽梅, 王旻, 陈卫. 枸杞多糖对α-葡萄糖苷酶的抑制作用系列研究[J]. 中药药理与临床, 2005, 21(3): 23-25
    [31] 张海凤, 董亚琳, 刘琳娜, 张琰. 大黄多糖对α-糖苷酶活性的抑制作用[J]. 医药导报, 2010, 29(8): 985-989
    [32] Goto T, Horita M, Nagai H, Nagatomo A, Nishida N, Matsuura Y, Nagaoka S. Tiliroside, a glycosidic flavonoid, inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[J]. Molecular Nutrition and Food Research, 2011, 56(3): 435-445
    [33] Johnston K, Sharp P, Clifford M, Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells[J]. Febs Letters, 2005, 579(17): 1653-1657
    [34] 夏毅伟, 韦莉萍, 谷豪, 王飞. 桃胶多糖对Caco-2细胞模型吸收葡萄糖的影响[J]. 中医药导报, 2012, 15(2): 228-232
    [35] 吴慧平, 哈团柱, 郜明. 夏枯草提取物对Caco-2细胞α-葡萄糖苷酶、SGLT-1、GLUT-2、Na+-K+-ATP酶mRNA表达的影响[J]. 中国生化药物杂志, 2010, 31(6): 373-376
    [36] 倪德江, 陈玉琼, 余志, 彼得R. 埃利斯, 克里斯托弗P. 科尔佩. 茶叶提取物对小肠Caco-2细胞糖吸收的抑制作用[J]. 华中农业大学学报, 2013, 32(1): 116-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700