三角履带式甘蔗收割机转向系统的设计与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Test of the Steering System of the Triangle Track Sugarcane Harvester
  • 作者:武涛 ; 柏元强 ; 邹小平 ; 张增学 ; 刘庆庭
  • 英文作者:Wu Tao;Bai Yuanqiang;Zou Xiaoping;Zhang Zengxue;Liu Qingting;Ministry of Education,Key Laboratory of Key Technology on Agricultural Machine and Equipment,South China Agricultural University;
  • 关键词:甘蔗收割机 ; 机械转向系统 ; 转弯半径
  • 英文关键词:sugarcane harvester;;steering system;;turning radius
  • 中文刊名:NJYJ
  • 英文刊名:Journal of Agricultural Mechanization Research
  • 机构:华南农业大学南方农业机械与装备关键技术教育部重点实验室/工程学院;
  • 出版日期:2018-12-24
  • 出版单位:农机化研究
  • 年:2019
  • 期:v.41
  • 基金:国家重点研发计划项目(2016YFD0701202)
  • 语种:中文;
  • 页:NJYJ201909043
  • 页数:7
  • CN:09
  • ISSN:23-1233/S
  • 分类号:239-245
摘要
针对我国目前山地甘蔗收割困难、缺乏适用收获装备的问题,设计了三角履带式甘蔗联合收割机转向系统,主要包括后桥、轮桥连接架的设计和转向油缸行程确定。针对关键部件转向后桥和轮桥连接架进行了受力计算与有限元应力分析,对转弯半径进行了计算,并进行了相应的试验。关键零件应力测试试验结果表明:转向后桥的最大静应力为43. 67MPa,动态稳定应力约50MPa,仿真误差为12. 66%;轮桥连接架转向最大静应力158.59 MPa,动态应力为176 MPa,仿真的误差为9. 89%,仿真与实际基本一致。转弯半径试验结果表明:理论转弯半径为6.4m,实际测试时由于车速不同,转弯半径在6.127~6.5m范围内,与理论最大误差4.27%,在可接受范围内,转向系统的设计达到了设计要求。
        In view of the difficulties in the harvesting of sugarcane in mountainous areas in China,the lack of the suitable harvest equipment,the steering system of the triangle track sugarcane combine harvester is designed. It mainly includes the rear axle,the wheel bridge connecting frame design and the steering oil cylinder stroke determination.The stress calculation and finite element stress analysis are carried out for the key components to the rear axle and the bridge connecting frame,and the turning radius is calculated and the corresponding experiment is carried out. The stress test results of the key parts show that the maximum static stress in the rear axle is 43. 67 MPa,the dynamic stability stress is about50 MPa,and the simulation error is 12.66%. The maximum static stress of the wheel bridge connecting frame is 158.59 MPa,the dynamic stress is 176 MPa,the simulation error is 9.89%,and the simulation is basically the same as the actual one.The test results of turning radius show that the theoretical turning radius is 6.4 m. In the actual test,due to different speed,the turning radius is within the range of 6.127 m ~ 6.5 m,and the maximum error is 4.27%,which is within acceptable range.The design of the steering system meets the design requirements.
引文
[1]莫荣旭.广西甘蔗机械化[M].南宁:广西科学技术出版社,2015:12-20.
    [2]曾志强,袁成宇,区颖刚,等.甘蔗生产机械化发展状况分析与对策研究[J].广东农业科学,2012(19):196-199.
    [3]吴钢,李志伟,刘皞春,等.前桥摆动转向式液压四驱底盘的转向控制研究[J].农机化研究,2018,40(8):236-240.
    [4]林立恒,侯加林,吴彦强,等.高低隙自走式喷雾机电控液压转向系统设计[J].农机化研究,2018,40(6):91-96.
    [5]齐英杰,孙志刚,马岩,等.小型履带拖拉机行走系统设计分析与实验研究[J].农机化研究,2018,40(1):228-233.
    [6]马翔,李耀明,唐忠,等.履带式联合收割机转向系统的结构特点及发展趋势[J].农机化研究,2018,40(4):1-6,25.
    [7]田新民,姚凯,王胜军,等.三角履带轮的结构与设计分析[R]. World Congress in Applied Computing,Computer Science,and Computer Engineering Advances in Communication Technology,2011.
    [8]林程,王文伟,田冠华,等.三角形履带车轮结构瞬态冲击分析[J].北京理工大学学报,2006(11):965-968.
    [9]刘泽旭,王立海,刘铁男,等.多功能集材机三角履带主参数确定[J].森林工程,2014(1):79-83.
    [10]程军伟,高连华,王红岩,等.履带车辆转向分析[J].兵工学报,2007,28(9):1110-1115.
    [11]王红岩,王钦龙,芮强,等.高速履带车辆转向过程分析与试验验证[J].机械工程学报,2014,50(16):162-170.
    [12]郑啸洲,孙伟.履带车辆液压机械差速转向特性分析[J].农业装备与车辆工程,2017,55(4):54-56.
    [13]王恒飞.四履带工程机械底盘设计[D].西安:长安大学,2013:33-46.
    [14]郭浩亮,穆希辉,杨小勇,等.四橡胶履带轮式车辆转向力学分析与试验[J].农机工程学报,2016,32(21):82-85.
    [15]冯益柏.坦克装甲车辆设计(传动系统卷)[M].北京:化学工业出版社,2015.3:61-72.
    [16]韩彦勇,郑喜贵.履带式联合收获机水田作业小半径转向阻力研究[J].江苏农业科学,2017,45(2):213-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700