毛竹植硅体微观形态及稳定性的扫描电镜初探
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stability of Phyllostachys edulis phytolith by scanning electron microscopy
  • 作者:赵丽华 ; 黄程鹏 ; 王悦悦 ; 黄张婷
  • 英文作者:ZHAO Lihua;HUANG Chengpeng;WANG Yueyue;HUANG Zhangting;School of Sciences, Zhejiang A&F University;
  • 关键词:植物学 ; 毛竹 ; 植硅体 ; 扫描电子显微镜 ; 稳定性 ; 微观形态
  • 英文关键词:botany;;Phyllostachys edulis;;phytolith;;scanning electron microscope;;stability;;micromorphology
  • 中文刊名:ZJLX
  • 英文刊名:Journal of Zhejiang A & F University
  • 机构:浙江农林大学理学院;
  • 出版日期:2018-11-30
  • 出版单位:浙江农林大学学报
  • 年:2018
  • 期:v.35;No.157
  • 基金:浙江省科技计划项目(2015C37069,2016C33028)
  • 语种:中文;
  • 页:ZJLX201806024
  • 页数:5
  • CN:06
  • ISSN:33-1370/S
  • 分类号:194-198
摘要
为了揭示竹子植硅体表面形态和结构,探究植硅体在缓冲液浸泡后形态是否稳定,以毛竹Phyllostachys edulis叶片为研究材料,采用微波消解法、湿灰化法和干灰化法,提取毛竹叶片中的植硅体。对提取的植硅体经镀金膜处理,用扫描电子显微镜(SU-8000 Hitachi)观测。结果表明:毛竹植硅体具有多种形态。微波消解法提取的毛竹植体长为12~14μm,宽为7~10μm,植硅体呈现长鞍形(竹节形),图像细节清晰,植硅体形态完整;湿灰化法和干灰化法提取的毛竹植硅体呈哑铃形,长约为12μm,连接处宽度约为4μm,两端的宽度约8μm,并且用湿灰化法提取的毛竹植硅体还可见微小突起。微波消解法是提取毛竹植硅体比较理想的方法。微波消解法提取的植硅体在p H 10的硼酸缓冲液中浸泡15 d后的微观形态可见:植硅体外表已出现溶蚀坑,表面变粗糙,可见硅质颗粒,呈现为聚集分布。说明植硅体表面已被破坏,呈现不稳定状态。
        In order to reveal the surface morphology and structure of bamboo plant phytolith and explore the stability of phytolith after strong alkali soaking, the leaves of Phyllostachys edulis were used as the research material to extract the phytolith by using microwave digestion method, wet ashing method and dry ashing method. The extracted phytolith was treated with gold plated film and observed by scanning electron microscope(SU-8000 Hitachi). The results showed that the phytoliths of Ph. edulis had various forms. The length of phytolith extracted by the microwave digestion method was 12-14 μm; the width of phytolith was 7-10 μm; the phytolith presented a long saddle shape(slub shaped); the image details were clear and the morphology of the Ph. edulis was complete. The phytolith extracted by wet ashing method and dry ashing method were dumbbell shaped with a length of about 12 μm. The width of the joint was about 4 μm and the width of the ends was about 8 μm. The phytolith extracted by wet ashing could also showed tiny protuberances. Microwave digestion was an ideal method to extract Phytolith from Ph. edulis. The micromorphology of the phytolith extracted by microwave digestion method could be seen after soaking in the boric acid buffer solution with a pH value of 10.The surface of the phytolith appeared corrosion pit and became rough; and the silica particles presented aggregation distribution. It indicated that the surface of the phytolith was damaged and unstable.
引文
[1] PARR J F, SULLIVAN L A. Soil carbon sequestration in phytoliths[J]. Soil Biol Biochem, 2005, 37(1):117-124.
    [2]王永吉,吕厚远.植物硅酸体研究及应用[M].北京:海洋出版社, 1993.
    [3] STR魻MBERG C A E. Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of north America during the late Eocene to early Miocene[J]. Palaeogeogr Palaeocl,2004, 207(3/4):239-275.
    [4] WILDING L P, BROWN R E, HOLOWAYCHUK N. Accessibility and properties of occluded carbon in biogenetic opal[J]. Soil Sci, 1967, 103(1):56-61.
    [5]左昕昕,吕厚远.我国旱作农业黍、粟植硅体碳封存潜力估算[J].科学通报, 2011, 56(34):2881-2887.ZUO Xinxin, L譈Houyuan. Carbon sequestration within millet phytoliths from dry-farming of crops in China[J]. Chin Sci Bull, 2011, 56(34):2881-2887.
    [6] PARR J F, SULLIVAN L A, QUIRK R. Sugarcane phytoliths:encapsulation and sequestration of a long-lived carbon fraction[J]. Sugar Tech, 2009, 11(1):17-21.
    [7] PARR J F, DOLIC V, LANCASTER G, et al. A microwave digestion method for the extraction of phytoliths from herbarium specimens[J]. Rev Palaeobot Palynol, 2001, 116(3/4):203-212.
    [8] PARR J, SULLIVAN L, CHEN Bihua, et al. Carbon bio-sequestration within the phytoliths of economic bamboo species[J]. Global Change Biol, 2010, 16(10):2661-2667.
    [9] POST W M, KWON K C. Soil carbon sequestration and land-use change:processes and potential[J]. Global Change Biol, 2000, 6(3):317-328.
    [10] FRAYSSE F, POKROVSKY O S, SCHOTT J, et al. Surface chemistry and reactivity of plant phytoliths in aqueous solutions[J]. Chem Geol, 2009, 258(3/4):197-206.
    [11] BARTOLI F, WILDING L P. Dissolution of biogenic opal as a function of its physical and chemical properties[J].Soil Sci Soc Am J, 1980, 44(4):873-878.
    [12] CONLEY D J, LIKENS G E, BUSO D C, et al. Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest[J]. Global Change Biol, 2008, 14(11):2548-2554.
    [13]应雨骐,项婷婷,李永夫,等.中国亚热带重要树种植硅体碳封存潜力估测[J].自然资源学报, 2015, 30(1):133-140.YING Yuqi, XIANG Tingting, LI Yongfu, et al. Estimation of sequestration potential via phytolith carbon by important forest species in subtropical China[J]. J Nat Resour, 2015, 30(1):133-140.
    [14] YANG Jie, WU Jiasen, JIANG Peikun, et al. A study of phytolith-occluded carbon stock in monopodial bamboo in China[J]. Sci Rep, 2015, 5:13292. doi:10.1038/srep13292.
    [15]周国模,姜培坤,徐秋芳.竹林生态系统中碳的固定与转化[M].北京:科学出版社, 2010.
    [16]郭起荣,杨光耀,杜天真,等.中国竹林的碳素特征[J].世界竹藤通讯, 2005, 3(3):25-28.GUO Qirong, YANG Guangyao, DU Tianzhen, et al. Carbon character of Chinese bamboo forest[J]. World Bamboo Rattan, 2005, 3(3):25-28.
    [17]曹君迈,贝盏临,江涌,等.枸杞花蕾扫描电镜制样方法的探讨[J].北方园艺, 2010(3):30-32.CAO Junmai, BEI Zhanlin, JIANG Yong, et al. Flower bud of Lycium barbarum L. scanning microscopy preparation methods discussed[J]. Northern Hortic, 2010(3):30-32.
    [18]肖媛,刘伟,汪艳,等.生物样品的扫描电镜制样干燥方法[J].实验室研究与探索, 2013, 32(5):45-53.XIAO Yuan, LIU Wei, WANG Yan, et al. Drying methods of biological sample preparation for scanning electron microscope[J]. Res Explor Lab, 2013, 32(5):45-53.
    [19]张喆,胡晶红,李佳,等.扫描电镜在生药研究领域中的应用概况[J].中国医药导报, 2013, 10(30):24-27.ZHANG Zhe, HU Jinghong, LI Jia, et al. Applications of scanning electron microscope in pharmacognosy research[J]. China Med Herald, 2013, 10(30):24-27.
    [20]杨杰,李永夫,黄张婷,等.碱溶分光光度法测定植硅体碳含量[J].分析化学, 2014, 42(9):1389-1390.YANG Jie, LI Yongfu, HUANG Zhangting, et al. Determination of phytolith-occluded carbon content using alkali dissolution-spectrophotometry[J]. Chin J Anal Chem, 2014, 42(9):1389-1390.
    [21] HUANG Zhangting, LI Yongfu, CHANG S X, et al. Phytolith-occluded organic carbon in intensively managed Lei bamboo(Phyllostachys praecox)stands and implications for carbon sequestration[J]. Can J For Res, 2015, 45(8):1019-1025.
    [22] WALKLEY A, BLACK I A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method[J]. Soil Sci, 1934, 37(1):29-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700