水泥路面路表动水压力现场测试及计算研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Field Test and Calculation of Surface Dynamic Water Pressure on Cement Concrete Pavement
  • 作者:郭寅川 ; 肖海涵 ; 申爱琴 ; 郑盼飞
  • 英文作者:GUO Yin-chuan;XIAO Hai-han;SHEN Ai-qin;ZHENG Pan-fei;Key Laboratory for Special Area Highway Engineering of Ministry of Education,Chang'an University;Louisiana Transportation Research Center,Louisiana State University;
  • 关键词:道路工程 ; 路表动水压力 ; 压阻式传感器 ; 水泥路面
  • 英文关键词:road engineering;;surface dynamic water pressure;;piezoresistive sensor;;cement concrete pavement
  • 中文刊名:GSYT
  • 英文刊名:Bulletin of the Chinese Ceramic Society
  • 机构:长安大学特殊地区公路工程教育部重点实验室;路易斯安那州立大学路易斯安那州交通研究中心;
  • 出版日期:2019-03-15
  • 出版单位:硅酸盐通报
  • 年:2019
  • 期:v.38;No.270
  • 基金:青年科学基金(51608047)
  • 语种:中文;
  • 页:GSYT201903022
  • 页数:8
  • CN:03
  • ISSN:11-5440/TQ
  • 分类号:146-153
摘要
针对行车荷载-动水耦合作用下水泥路面耐久性劣化及表面功能损伤等问题,为了实测水泥路面路表动水压力值,分析其在不同荷载及车速下的响应状态。通过现场钻孔埋置专门设计的压阻式传感器,测量小轿车和大卡车作用下的水泥路面路表动水压力值与车速的关系曲线,提出基于6 mm水膜厚度和不同荷载作用下的路表动水压力计算模型:P=0. 000058V~2-0. 0041V+0. 1124和P=0. 0001V~2-0. 0061V+0. 113,并进行了计算分析。研究结果表明:水泥路面路表动水压力随着车速的增大而增大,并和车速的平方成正比例关系,120 km/h的小轿车产生的路表动水压力峰值为0. 49 MPa,80 km/h的大卡车产生的路表动水压力峰值为0. 52 MPa;随着车轮的驶过,动水压力会先增大后急速减小直到出现一个瞬时的泵吸压力,其值约为正压力峰值的1/3~1/5,两者交互作用造成路面表面功能损伤;当车速达到60 km/h后,胎压对动水压力具有显著性影响,表明高速行驶的重载车形成的动水压力对水泥路面表面造成的损伤劣化最为严重。
        For degradation of the durability of concrete pavement,and the problem of surface function damage under the action of driving load and dynamic water,in order to test the surface dynamic water pressure on cement concrete pavement and analyze its response under the different load and speed. The surface dynamic water pressure and the speed relation curve were measured under the action of cars and trucks by piezoresistive sensor,specially designed by field drilling embedment. The surface dynamic water pressure calculation model was brought up based on the 6 mm thickness of water film and the different load effect: P = 0. 000058 V~2-0. 0041 V + 0. 1124 and P = 0. 0001 V~2-0. 0061 V + 0. 113,and then compared with other calculation model. The research results show that the dynamic water pressure on cement concrete pavement as the speed increases,and direct proportion relationship between the square of the speed. The surface dynamic water pressure peak become 0. 49 MPa under the action of 120 km/h car,and become 0. 52 MPa under the action of 80 km/h truck. As the wheels passed,the dynamic water pressure would increase first and then sharply reduced until a transient pump suction pressure appeared.Its value is about the positive pressure peak of 1/3-1/5 and the interaction of both make the road surface damage. When the speed reaches 60 km/h,tire pressure would have a significant influence on dynamic water pressure. It suggests that the formation of high-speed heavy truck dynamic water pressure on the cement road surface damage degradation is most serious.
引文
[1]潘宝峰.动水压力作用下路面材料损伤的评价方法研究[D].大连:大连理工大学,2010.
    [2]李少波,张宏超,孙立军.动水压力的形成与模拟测量[J].同济大学学报(自然科学版),2007(7):915-918.
    [3]李强.路表动水压力计算研究[D].重庆:重庆交通大学,2012.
    [4]周长红,陈静云,王哲人,等.沥青路面动水压力计算及其影响因素分析[J].中南大学学报(自然科学版),2008(5):1100-1104.
    [5]周维锋.基于计算流体力学(CFD)水压力计算的数值模拟[D].重庆:重庆交通大学,2012.
    [6]董强柱,李彦伟,石鑫,等.道路表面动水压力的计算和分析[J].长安大学学报(自然科学版),2013,33(5):17-22.
    [7]陈昊.路面动水压力光纤传感测量与模拟分析研究[D].南京:南京航空航天大学,2009.
    [8]周永莲.基于五维光纤传感器的沥青路面动水压力实测研究[D].武汉:武汉工程大学,2015.
    [9]蒋泽民,高俊启,季天剑,等.压电传感器测量路面动水压力研究[J].传感器与微系统,2012,31(4):17-19.
    [10]汤潍泽,欧金秋,崔新壮,等.车载引起的沥青路面内动水压力现场试验研究[J].山东大学学报(工学版),2015,45(6):84-90+106.
    [11]吕栋,胡小弟,周永莲,等.基于五维光纤传感器的沥青路面动水压力测量的研究[J].武汉工程大学学报,2016,38(3):268-272.
    [12]高俊启,陈昊,季天剑,等.沥青路面动水压力光纤传感测量研究[J].传感器与微系统,2009,28(9):59-61.
    [13]魏鹏克.动水压力作用下沥青混凝土路面破坏研究[D].重庆:重庆交通大学,2013.
    [14]李琼.动水压力对沥青混凝土路面的破坏研究[J].淮阴工学院学报,2014,23(3):50-53.
    [15]吕栋.考虑动水压力作用的沥青混合料抗剥落性能测试方法研究[D].武汉:武汉工程大学,2016.
    [16]Bruhwiler E,Saouma V.Water fracture interactionin concrete,part I:fracture properties[J].ACI Materials Journal,1995,92(3):296-303.
    [17]Bruhwiler E,Saouma V.Water fracture interactionin concrete,part II:hydrostatic pressure cracks[J].ACI Materials Journal,1995,92(4):383-390.
    [18]张铁富,杨国庆,易志坚,等.水压力对砼面板板底裂纹的劈裂作用和数值模拟[J].重庆交通大学学报,2007,26(5):61-63.
    [19]Bartlett F M,Mac Gregor J G.Effect of moisture condition on concrete core strengths[J].ACI Materials Journal,1993,91(3):227-236.
    [20]李鑫鑫.孔隙水对混凝土静力特性的影响研究[D].重庆:重庆交通大学,2011.
    [21]梁军林.水泥混凝土路面断裂破坏机理及应用研究[D].西安:长安大学,2004.
    [22]白卫峰.混凝土损伤机理及饱和混凝土力学性能研究[D].大连:大连理工大学,2008.
    [23]Kamali S,Moranvilif M,Leclercq S.material and environmental parameter effects on the leaching of cement pastes experiments and modeling[J].Cement and Concrete Research,2008,38(4):575-585.
    [24]Feldman R F,Sereda P J.New model for hydrated Portland cement and its practicalimplications[J].Engineering Journal,1970,53(8-9):53-57.
    [25]Torrijos M C,Giaccio G,Zerbino R.Mechanical and transport properties of 10 years old concretes prepared with different coarse aggregates[J].Construction and Building Materials,2013,44:706-715.
    [26]郭成锐,林鸣谢.压阻式MEMS压力传感器的原理与分析[J].电子质量,2007(9):38-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700