FTS干涉信号延时补偿算法的仿真分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Time-delay Compensation Simulation and Analysis of Interference Signal Based on FTS Technology
  • 作者:翟茂林 ; 李涛 ; 张玉贵
  • 英文作者:ZHAI Maolin;LI Tao;ZHANG Yugui;Beijing Institute of Space Mechanics & Electricity;Beijing Engineering Technology Research Center of Aerial Intelligent Remote Sensing Equipments;
  • 关键词:傅里叶变换光谱仪 ; 延时补偿 ; 干涉图重构 ; 高光谱遥感
  • 英文关键词:Fourier Transform Spectrometer;;time-delay compensation;;interferogram reconstruction;;hyperspectral remote sensing
  • 中文刊名:HFYG
  • 英文刊名:Spacecraft Recovery & Remote Sensing
  • 机构:北京空间机电研究所;北京市航空智能遥感装备工程技术研究中心;
  • 出版日期:2019-06-15
  • 出版单位:航天返回与遥感
  • 年:2019
  • 期:v.40;No.177
  • 基金:地球观测与导航专项;; 国家重点研发计划项目:大气辐射超光谱探测技术(2016YFB0500700)
  • 语种:中文;
  • 页:HFYG201903008
  • 页数:10
  • CN:03
  • ISSN:11-4532/V
  • 分类号:51-60
摘要
基于干涉分光原理的傅里叶变换光谱仪通过将激光信号作为采样参考信号对干涉信号进行等光程差采样,然而动镜扫描不稳以及后续焦平面电路的差异会造成干涉信号与激光参考信号之间存在相对延时,导致数据的非同步性。随着多元探测器技术的快速发展,探测器信号路数急速扩展,目前广泛采用添加延时线的延时补偿方法需要大量硬件配置将不再适用。文章针对该问题提出一种延时补偿的软件实现方法,利用通过建模仿真得到的干涉数据完善了激光信号过零点获取、干涉数据重构等算法,并通过MATLAB进行了补偿原理的仿真分析。结果表明:通过该算法对干涉信号进行延时匹配重采样,可以将相对延时补偿到1μs以内,光谱复原度高于99%,可较好抑制动镜扫描不稳带来的光程差采样误差。用于高光谱遥感的后期数据处理,可有效提高光谱复原精度。
        As to Fourier Transform Spectrometer based on the Michelson Interferometer, a laser interference signal is provided as the reference signal to sample the interference signals with identical optical path difference. Both the dynamic instability of the scanning mirror and the difference of focal plane circuits will result in the relative time delay between the laser interference signal and the interference signal, causing non-synchronicity between the two signals. Currently, with the sharply increasing of the number of pixels on the focal plane, the signal links are such a large number that adding delay line is no longer applicable as a result of too much workload for hardware configuration. In this paper, a kind of software method for compensating the relative time delay is proposed to substitute the hardware method of adding delay line, and the principle of compensation is simulated and analyzed with MATLAB. The result shows that the relative time delay can be compensated to 1μs and the spectral recovery accuracy is higher than 99% by matching the time delay and resampling the interference signal. The sampling error of optical path difference caused by the unstable scanning speed of the moving mirror can be effectively suppressed. This method can be used in data processing of hyperspectral remote sensing and effectively improves the precision of spectral restoration.
引文
[1]THURMAN S T,FIENUP J R.Fizeau Fourier Transform Imaging Spectroscopy:Missing Data Reconstruction[J].Optics Express,2008,16(9):6631-6645.
    [2]SELLAR R G,RAFERT J B.Fourier Transform Imaging Spectrometer with a Single Toroidal Optic[J].Applied Optics,1995,34(16):29-31.
    [3]KAWATA S,MINAMI K,MINAMI S.Super Resolution of Fourier Transform Spectroscopy Data by the Maximum Entropy Method[J].Applied Optics,1983,22(22):3593-3598.
    [4]夏翔,华建文,段娟,等.傅里叶变换光谱仪动镜速度波动分析研究[J].科学技术与工程,2014,14(20):72-76.XIA Xiang,HUA Jianwen,DUAN Juan,et al.Analysis of Speed Fluctuation of Moving Mirror in Fourier Transform Spectrometer[J].Science Technology and Engineering,2014,14(20):72-76.(in Chinese)
    [5]TENG Y C,ROYCE B S.Quantitative Fourier Transform IR Photoacoustic Spectroscopy of Condensed Phases[J].Applied Optics,1982,21(1):77-80.
    [6]相里斌.傅里叶变换光谱仪中的主要技术环节[J].光子学报,1997(6):550-554.XIANG Libin.The Key Design Issues in Fourier Transform Spectrometers[J].Acta Photonica Sinica,1997(6):550-554.(in Chinese)
    [7]龚忠清,孙晓兵,张荞,等.傅里叶变换红外光谱仪偏振标定[J].量子电子学报,2011,28(2):142-146.GONG Zhongqing,SUN Xiaobing,ZHANG Qiao,et al.Calibration of Polarimetric Fourier Transform Infrared Spectrometer[J].Chinese Journal of Quantum Electronics,2011,28(2):142-146.(in Chinese)
    [8]WEN W,ZHANG H Y,XIE F L.Design and Implementation of Data Acquisition Network Based on RFID[J].Electronic Design Engineering,2009(10):157-162.
    [9]LUC P,GERSTENKORN S.Fourier Transform Spectroscopy in the Visible and Ultraviolet Range[J].Applied Optics,1978,17(9):1327-1331.
    [10]张淳民,穆廷魁,颜廷昱,等.高光谱遥感技术发展与展望[J].航天返回与遥感,2018,39(3):108-118.ZHANG Chunmin,MU Tingkui,YAN Tingyu,et al.Overview of Hyperspectral Remote Sensing Technology[J].Spacecraft Recovery&Remote Sensing,2018,39(3):108-118.(in Chinese)
    [11]董欣,徐彭梅,侯立周.大气环境红外甚高光谱分辨率探测仪设计与实现[J].航天返回与遥感,2018,39(3):38-47.DONG Xin,XU Pengmei,HOU Lizhou.Design and Implementation of Atmospheric Infrared Ultra-spectral Sounder[J].Spacecraft Recovery&Remote Sensing,2018,39(3):38-47.(in Chinese)
    [12]熊伟.星载超光谱大气主要温室气体监测仪载荷[J].航天返回与遥感,2018,39(3):56-66.XIONG Wei.Hyperspectral Greenhouse Gases Monitor Instrument(GMI)for Spaceborne Payload[J].Spacecraft Recovery&Remote Sensing,2018,39(3):56-66.(in Chinese)
    [13]TENG Y C,ROYCE B S.Quantitative Fourier Transform IR Photoacoustic Spectroscopy of Condensed Phases[J].Applied Optics,1982,21(1):77-80.
    [14]范松灿.傅立叶变换红外光谱仪的原理与特点[J].科技创新与生产力,2007(11):40-41.FAN Songcan.The Principle and Characteristic of the FTIR Spectrometer[J].Technology Innovation and Productivity,2007(11):40-41.(in Chinese)
    [15]吴瑾光.近代傅里叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994.WU Jinguang.Modern Fourier Transform Infrared Spectroscopy and Its Application[M].Beijing:Science and Technology Academic Press,1994.(in Chinese)
    [16]翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005.WENG Shifu.Fourier Transform Infrared Spectrometer[M].Beijing:Chemical Industry Press.2005.(in Chinese)
    [17]王建波,姜旭峰.浅谈傅立叶变换红外光谱仪的原理及使用[J].科技风,2011(18):124.WANG Jianbo,JIANG Xufeng.Principle and Application of Fourier Transform Infrared Spectrometer[J].Technology Trend,2011(18):124.(in Chinese)
    [18]吕群波,姚涛,相里斌,等.干涉数据光谱反演方法研究[J].光谱学与光谱分析,2010,30(1):114-117.LYU Qunbo,YAO Tao,XIANG Libin,et al.Spectrum Recovery Method for Interferometric Data[J].Spectroscopy and Spectral Analysis,2010,30(1):114-117.(in Chinese)
    [19]江舸,陶荣辉,李钒,等.基于FPGA实现的FFT插值正弦波频率估计[J].太赫兹科学与电子信息学报,2009,7(6):569-572.JIANG Ge,TAO Ronghui,LI Fan,et al.FFT Interpolation Sinusoidal Frequency Estimation Based on FPGA[J].Journal of Terahertz Science and Electronic Information Technology,2009,7(6):569-572.(in Chinese)
    [20]李耀彬,曾祥斌,沈铖武.基于抛物线插值的正弦波拟合算法[J].计算机工程与设计,2009,30(11):2793-2795.LI Yaobin,ZENG Xiangbin,SHEN Chengwu.Based on the Parabola Interpolation of Sine Fitting Method[J].Computer Engineering and Design,2009,30(11):2793-2795.(in Chinese)
    [21]张松.基于FFT的正弦信号频率估算新方法[J].大理大学学报,2009,8(8):36-39.ZHANG Song.A New FFT Based on Algorithm for Sinusoid Frequency Estimation[J].Journal of Dali University,2009,8(8):36-39.(in Chinese)
    [22]朱超,鲁昌华,刘文清,等.FTIR干涉图相位校正技术的研究[J].电子测量与仪器学报,2013,27(7):663-668.ZHU Chao,LU Changhua,LIU Wenqing,et al.Study on Phase Correction Technique of FTIR Interferogram[J].Journal of Electronic Measurement and Instrument,2013,27(7):663-668.(in Chinese)
    [23]李苏宁,朱日宏,李建欣,等.傅里叶干涉成像光谱技术中的重构方法[J].应用光学,2009,30(2):354-360.LI Suning,ZHU Rihong,LI Jianxin,et al.Reconstruction Method in Fourier Interference Imaging Spectroscopy[J].Applied Optics,2009,30(2):354-360.(in Chinese)
    [24]李苏宁,朱日宏,高志山,等.共轭傅里叶变换校正成像光谱重构[J].光学学报,2011,31(4):152-158.LI Suning,ZHU Rihong,GAO Zhishan,et al.Spectral Reconstruction of Corrected Imaging Using Conjugate Fourier Transform[J].Acta Optica Sinica,2011,31(4):152-158.(in Chinese)
    [25]李妍,李胜,高闽光,等.两种红外干涉图采集及光谱复原方法的对比研究[J].光学学报,2015,35(9):358-364.LI Yan,LI Sheng,GAO Minguang,et al.A Comparative Study of Two Infrared Interferogram Acquisition and Spectral Restoration Methods[J].Acta Optica Sinica,2015,35(9):358-364.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700