1064 nm激光泵浦D_2产生1560 nm拉曼激光
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Conversion Efficiency of 1 560 nm Raman Laser in Deuterium Gas Pumped by 1 064 nm Pulsed Laser
  • 作者:李仲慧 ; 郑天成 ; 蔡向龙 ; 沈陈诚 ; 刘栋 ; 郭敬为
  • 英文作者:LI Zhong-hui;ZHENG Tian-cheng;CAI Xiang-long;SHEN Chen-cheng;LIU Dong;GUO Jing-wei;Dalian Institute of Chemical Physics,Chinese Academy of Sciences;
  • 关键词:受激拉曼散射 ; 拉曼激光 ; 转化效率 ; 斯托克斯 ; 压力
  • 英文关键词:stimulated Raman scattering(SRS);;Raman laser;;conversion efficiency;;Stokes;;pressure
  • 中文刊名:YYWL
  • 英文刊名:Modern Applied Physics
  • 机构:中国科学院大连化学物理研究所;
  • 出版日期:2019-06-26
  • 出版单位:现代应用物理
  • 年:2019
  • 期:v.10
  • 基金:国家自然科学基金资助项目(11475177;61505210);; 中国科学院化学激光重点实验室开放课题(KLCL2018)
  • 语种:中文;
  • 页:YYWL201902003
  • 页数:5
  • CN:02
  • ISSN:61-1491/O4
  • 分类号:14-18
摘要
以波长为1 064 nm的线偏振脉冲激光为泵浦源,以高压氘气作为拉曼介质,实现了波长为1 560 nm的一阶拉曼S_1、波长为2 920 nm的二阶拉曼S_2和后向一阶拉曼BS_1输出。采用透镜组双次聚焦的方法将S_1的光子转化效率提高到61.5%,S_1的最大单脉冲能量达到86.3 mJ,脉宽不超过10 ns。S_2和BS_1的最高光子转化效率分别超过12%和20%。此外,通过实验论证了压力对光子转化效率的影响,给出了进一步提高S_1的光子转化效率的方法。
        In this paper, the first order Raman Stokes(S_1)with wavelength of 1 560 nm and the second order Raman Stokes(S_2) with wavelength of 2 920 nm and the backward first Stokes(BS_1) are generated by using a linear polarized pulsed laser with wavelength of 1 064 nm as pumped source and high pressure deuterium gas as Raman active medium. The maximum photon conversion efficiency of S_1 is 61.5%, the maximum single pulse output energy of S_1 is 86.3 mJ, and the pulse width of S_1 is not more than 10 ns. The highest photon conversion efficiencies of S_2 and BS_1 are more than 12% and 20%, respectively. The effect of pressure of deuterium on the conversion efficiency of S_1 is also verified experimentally, and the methods to further improve conversion efficiency of S_1 are also discussed.
引文
[1]RAMAN C V.A change of wave-length in light scattering[J].Nature,1928,121:619.
    [2]CARLSTEN J L,TELLE J M,WENZEL R G.Efficient stimulated Raman scattering due to absence of second stokes growth[J].Opt Lett,1984,9(8):353-355.
    [3]CAI X L,ZHOU C H,ZHOU D J,et al.H2stimulated Raman scattering in a multi-pass cell with a Herriot configuration[J].Chin Phys Lett,2015,32(11):114207.
    [4]ZHOU D J,GUO J W,ZHOU C H,et al.Intracavity CH4Raman laser using negative-branch unstable resonator[J].Opt Commun,2015,356:49-53.
    [5]CARNUTH W,TRICKL T.A powerful eyesafe infrared aerosol lidar:Application of stimulated Raman backscattering of 1.06μm radiation[J].Rev Sci Instrum,1994,65(11):3 324-3 331.
    [6]HE L J,LIU K,LIU Z,et al.1.5μm high-energy burstmode picoseconds pulsed lasers based on an optical parametric oscillator[J].Laser Phys Lett,2018,15(10):105003.
    [7]AUBOURG A,DIDIERJEAN J,AUBRY N,et al.Passively Q-switched diode-pumped Er:YAG solid-state laser[J].Opt Lett,2013,38(6):938-940.
    [8]HANNA D C,POINTER D J,PRATT D J.Stimulated Raman scattering of picosecond light pulses in hydrogen,deuterium,and methane[J].IEEE J Quantum Electron,1986,22(2):332-336.
    [9]SPULER S M,MAYOR S D.Raman shifter optimized for lidar at a 1.5μm wavelength[J].Appl Opt,2007,46(15):2 990-2 995.
    [10]LIU D,CAI X L,LI Z H,et al.The threshold reduction of SRS in deuterium by multi-pass configuration[J].Opt Commun,2016,379:36-40.
    [11]WANG Z F,BELARDI W,YU F,et al.Efficient diodepumped mid-infrared emission from acetylene-filled hollowcore fiber[J].Opt Exp,2014,22(18):21 872-21 878.
    [12]HOOPER W P,FRICK G M,MICHAEL B P.Using backward Raman scattering from coupled deuterium cells for wavelength shifting[J].Opt Eng,2009,48(8):084302.
    [13]冷静.气体中的受激拉曼散射研究及其在激光波长转换中的应用[D].大连:中国科学院大连化学物理研究所,2006.(LENG Jing.Study on stimulated Raman scattering in gas medium and its application in laser wavelength conversion[D].Dalian:Dalian Institute of Chemical Physics,Chinese Academy of Sciences,2006.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700