硫离子注入纳米金刚石薄膜的微结构和电化学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructural and electrochemical properties of sulfur ion implanted nanocrystalline diamond films
  • 作者:蒋梅燕 ; 朱政杰 ; 陈成克 ; 李晓 ; 胡晓君
  • 英文作者:Jiang Mei-Yan;Zhu Zheng-Jie;Chen Cheng-Ke;Li Xiao;Hu Xiao-Jun;College of Materials Science and Engineering, Zhejiang University of Technology;
  • 关键词:纳米金刚石薄膜 ; 硫离子注入 ; 电化学性能 ; 微结构
  • 英文关键词:nanocrystalline diamond films;;sulfur ion implantation;;electrochemical properties;;microstructure
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:浙江工业大学材料科学与工程学院;
  • 出版日期:2019-07-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 语种:中文;
  • 页:WLXB201914030
  • 页数:8
  • CN:14
  • ISSN:11-1958/O4
  • 分类号:356-363
摘要
采用热丝化学气相沉积法制备纳米金刚石薄膜,并对薄膜进行硫离子注入和真空退火处理.系统研究了退火温度对薄膜微结构和电化学性能的影响.结果表明,硫离子注入有利于提升薄膜的电化学可逆性.在800°C及以下温度退火时,薄膜中晶界处的非晶碳相逐渐向反式聚乙炔相转变,致使电化学性能逐渐变差.当退火温度上升到900°C时, Raman光谱和TEM结果显示此时薄膜中金刚石相含量较多且晶格质量较好,晶界中的反式聚乙炔发生裂解; X射线光电子能谱结果表明,此时C—O键、C=O键、p—p*含量显著增多; Hall效应测试显示此时薄膜迁移率与载流子浓度较未退火时明显升高;在铁氰化钾电解液中氧化还原峰高度对称,峰电位差减小至0.20 V,电化学活性面积增加到0.64 mC/cm~2,电化学可逆性远好于600, 700, 800°C退火时的样品.
        Nanocrystalline diamond(NCD) films have a composite structure composed of diamond grains and amorphous carbon grain boundaries. Compared with microcrystalline diamond(MCD) films, the NCD film grain boundaries are rich in a large number of p bonds, thus providing conductive channels. Its conductivity is 3-7 orders of magnitude higher than that of MCD, and the surface of NCD film is uniform and dense, and the roughness is lower, so the NCD film is a promising electrode material. In our previous study, microwave plasma chemical vapor deposition was successfully used to prepare n-type sulfur-doped diamond films with good electrical properties. However, the electrochemical properties of sulfur-doped nanocrystalline diamond films have not been studied till now. In the present work, the nanocrystalline diamond films are prepared by the hot-wire chemical vapor deposition. The films are subjected to ion implantation and vacuum annealing. The effects of annealing temperature on the microstructure and electrochemical properties of the films are investigated. The results show that the sulfur ion implantation is beneficial to the improvement of the electrochemical reversibility of the film. When annealed at 800 °C and below, the amorphous carbon phase at the grain boundary in the film gradually changes into the trans-acetylene phase, resulting in a gradual deterioration of electrochemical performance. When the annealing temperature rises to 900 °C, Raman spectrum and TEM results show that the film has more diamond phase content and better lattice quality, and the transpolyacetylene in the grain boundary is cracked; XPS results indicate that the CO bond at this time, C=O bond, and p—p* content increase significantly; Hall test shows that the film mobility and carrier concentration are significantly higher than those of unannealed film. The redox peak in the electrolyte is highly symmetrical,the peak potential difference is reduced to 0.20 V, the electrochemical active area is increased to 0.64 mC/cm~2,and the electrochemical reversibility is much better thanthose of samples annealed at 600 °C, 700 °C, and 800 °C,respectively.
引文
[1]Chailapakul O,Aksharanandana P,Frelink T 2001 Sens.Actuators,B 80 193
    [2]Denisova A E,Pleskov Y V 2008 Russ.J.Electrochem.441083
    [3]Green S J,Mahe L S A,Rosseinsky D R 2013 Electrochim.Acta 107 111
    [4]ubomfr S L,Jozef S,Jana S 2013 Electrochim.Acta 87 503
    [5]Xu H,Chen C K,Fan D,Jiang M Y,Li Xiao,Hu X J 2019Carbon 145 187
    [6]Gu S S,Hu X J,Huang K 2013 Acta Phys.Sin.62 118101(in Chinese)[顾珊珊,胡晓君,黄凯2013物理学报62 118101]
    [7]Pan J P,Hu X J,Lu L P,Yin C 2010 Acta Phys.Sin.597410(in Chinese)[潘金平,胡晓君,陆利平,印迟2010物理学报59 7410]
    [8]Wang S,Swope V M,Butler J E 2009 Diamond Relat.Mater.18 669
    [9]Barek J,Jandova K,Peckova K,Zima J 2007 Talanta 74 421
    [10]Williams O A,Nesladek M,Daenen M,Michaelson S,Hoffman A,Osawa E,Heaner K,Jackman R B 2008 Diamond Relat.Mater.17 1080
    [11]Jiang M Y,Yu H,Li X,Lu S H,Hu X J 2017 Electrochim.Acta 258 61
    [12]Hu X J,Ye J S,Hu H,Chen X H,Shen Y G 2011 Appl.Phys.Lett. 99 131902
    [13]Hu X J,Ye J S,Liu H J,Shen Y G,Chen X H 2011 J.Appl.Phys.109 053524
    [14]Wang R,Hu X J 2014 Acta Phys.Sin.63 148102(in Chinese)[王锐,胡晓君2014物理学报63 148102]
    [15]Hu X J,Li R B,Shen H S,Dai Y B,He X C 2004 Journal Semiconductors 25 8(in Chinese)[胡晓君,李荣斌,沈荷生,戴永兵,何贤昶2004半导体学报25 8]
    [16]Galar P,Dzurnak B,Varga M 2014 Opt.Mater.Express 4624
    [17]Ferrari A C,Robertson 2001 Phys.Rev.B 64 075414
    [18]Ferrari A C,Robertson 2001 Phys.Rev.B 63 121405
    [19]Chhowalla M,Ferrari A C,Robertson J,Amaratunga G A J2000 Appl. Phys.Lett.76 1419
    [20]Ferrari A C,Robertson J 2004 P.Roy.Soc.A-Math.Phy.362 2477
    [21]Mei Y S,Fan D,Lu S H,Shen Y G,Hu X J 2016 J.Appl.Phys.120 225107
    [22]Hu X J,Chen C K,Lu S H 2016 Carbon 98 671
    [23]Pleskov Y V,Krotova M D,Ralchenko V G 2010 Russ.J.Electrochem.46 1063
    [24]Pleskov Y V,Krotova M D,Saveliev A V,Ralchenko V G2007 Diamond Relat.Mater.16 2114
    [25]Simon N,Girard H,Ballutaud D 2005 Diamond Relat.Mater.14 1179
    [26]Osswald S,Yushin G,Mochalin V,Kucheyev S O,Gogotsi Y2006 J.Am.Chem.Soc.128 11635

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700