三种非活性微生物对铀的吸附行为及其受γ辐照的动力学影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biosorption of U(Ⅵ) on Three Kinds of Inactivated Microorganisms and Its Effect by γ-Ray Irradiation
  • 作者:张伟 ; 董发勤 ; 杨杰 ; 聂小琴 ; 王岩 ; 霍婷婷 ; 周琳
  • 英文作者:ZHANG Wei;DONG Fa-qin;YANG Jie;NIE Xiao-qin;WANG Yan;HUO Ting-ting;ZHOU Lin;Research Center of Laser Fusion,China Academy of Engineering Physics;Analytical and Testing Center,Southwest University of Science and Technology;Key Laboratory of Solid Waste Treatment and Resource Recycle,Ministry of Education;School of National Defense Science and Technology,Southwest University of Science and Technology;School of Environment and Resource,Southwest University of Science and Technology;
  • 关键词:酿酒酵母菌 ; 耐辐射奇球菌 ; 大肠杆菌 ; U(Ⅵ) ; γ辐照 ; 吸附
  • 英文关键词:Saccharomyces cerevisiae;;Deinococcus radiodurans;;Eschericia coli;;U(Ⅵ);;γ-ray irradiation;;biosorption
  • 中文刊名:HXFS
  • 英文刊名:Journal of Nuclear and Radiochemistry
  • 机构:中国工程物理研究院激光聚变研究中心;西南科技大学分析测试中心;固体废物处理与资源化教育部重点实验室;西南科技大学国防科技学院;西南科技大学环境与资源学院;
  • 出版日期:2018-05-31 16:15
  • 出版单位:核化学与放射化学
  • 年:2018
  • 期:v.40;No.173
  • 基金:国家重点基础研究发展计划(973计划)(2014CB846003)
  • 语种:中文;
  • 页:HXFS201804007
  • 页数:9
  • CN:04
  • ISSN:11-2045/TL
  • 分类号:52-60
摘要
以非活性酿酒酵母菌、耐辐射奇球菌、大肠杆菌为研究对象,利用电感耦合等离子体质谱仪(ICP-MS)、红外光谱(FTIR)等测试手段,研究溶液初始pH值、U(Ⅵ)初始浓度等因素对三种非活性微生物吸附U(Ⅵ)的影响,并探讨了不同强度γ辐照下三种非活性微生物对U(Ⅵ)的吸附动力学过程。结果显示:三种非活性微生物均能有效去除水体中的U(Ⅵ),并且是一个快速反应过程。溶液pH=5.0时吸附效果最佳。同等实验条件下,三种非活性微生物吸附U(Ⅵ)达到吸附平衡的顺序为酿酒酵母菌>耐辐射奇球菌>大肠杆菌。三种非活性微生物细胞通过细胞表面的羟基、氨基、羧基、羰基及磷酸基团的配位作用来吸附铀。γ射线辐照后,三种非活性微生物对U(Ⅵ)的吸附率明显低于未受辐照时的吸附率,原因可能是辐照因素改变了菌体表面的活性位点。实验用非活性微生物与U(Ⅵ)作用的激烈程度是细菌>真菌。
        Biosorption of U(Ⅵ)by inactivated Saccharomycescerevisiae,Deinococcus radiodurans and Eschericia coli were investigated in a batch system.The influences of initial solu-tion pH and uranium concentration on uranium biosorption were studied.Kinetics behaviors of U(Ⅵ)adsorption on three microorganisms were researched under the condition ofγ-ray irradiation.The study confirm that three kinds of inactivated microorganisms can effectively remove uranium from aqueous solution.Optimum biosorption is observed at pH 5.0.The time sequence for the establishment of uranium biosorption equilibrium is Saccharomyces cerevisiae,Deinococcus radiodurans and Eschericia coli.Cell surfaces still have abundant active groups after inactivation.Hydroxyl,amino,carboxyl,carbonyl and phosphate groups are the main functional groups which can react with uranium.The uranium removal efficiencies on three kinds of inactivated microorganisms underγ-ray irradiation are significantly lower than those of unirradiation.The reason may be that the irradiation factors change the active sites on the surface of bacteria.The intensity of the interaction between U(Ⅵ)and microorganisms is bacteria>fungus.
引文
[1]李鑫,胡洪营,余骏一,等.放射性废水处理中吸附铀的优势藻种筛选[J].环境科学,2016,37(5):1858-1863.
    [2]Sohbatzadeh H,Keshtkar A R,Safdari J,et al.U(Ⅵ)biosorption by bi-functionalized Pseudomonas putida@chitosan bead:modeling and optimization using RSM[J].Int J Biol Macromol,2016,89:647-658.
    [3]Carvajal D A,Katsenovich Y P,Lagos L E.The effects of aqueous bicarbonate and calcium ions on uranium biosorption by Arthrobacter G975 strain[J].Chem Geol,2012,330-331:51-59.
    [4]白静,秦芝,王菊芳,等.粘红酵母对铀的吸附研究[J].光谱学与光谱分析,2009,29(5):1218-1221.
    [5]Bayramogˇlu G,elik G,Arica M Y.Studies on accumulation of uranium by fungus Lentinus sajor-caju[J].J Hazard Mater,2006,136(2):345-353.
    [6]Moghaddam M R,Fatemi S,Keshtkar A.Adsorption of lead(Pb2+)and uranium(UO2+2)cations by brown algae;experimental and thermodynamic modeling[J].Chem Eng J,2013,231:294-303.
    [7]Li X L,Ding C C,Liao J L,et al.Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3[J].J Environ Sci,2016,41:162-171.
    [8]Zhao C S,Liu J,Li X Y,et al.Biosorption and bioaccumulation behavior of uranium on Bacillus sp.dwc-2:investigation by Box-Behenken design method[J].J Mol Liq,2016,221(9):156-165.
    [9]Nie X Q,Dong F Q,Liu M X,et al.Removal of uranium from aqueous solutions by Spirodela punctata as the mechanism of biomineralization[J].Procedia Environ Sci,2016,31:382-391.
    [10]刘文娟,徐伟昌,王宝娥.两种酵母菌吸附铀的对比研究[J].南华大学学报(理工版),2003,17(4):68-71.
    [11]Bai J,Yao H J,Fan F L,et al.Biosorption of uranium by chemically modified Rhodotorula glutinis[J].J Environ Radioact,2010,101:969-973.
    [12]刘明学,张东,康厚军,等.铀与酵母菌细胞表面相互作用研究[J].高校地质学报,2011,17(3):53-58.
    [13]Wang T S,Zheng X Y,Wang X Y,et al.Different biosorption mechanisms of uranium(Ⅵ)by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions[J].J Environ Radioact,2017,167:92-99.
    [14]肖方竹,何淑雅,彭国文,等.功能化磁性载体固定耐辐射奇球菌及其对铀的吸附行为与机理[J].中国有色金属学报,2016,26(7):1568-1575.
    [15]Kulkarni S,Ballal A,Apte S K.Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans[J].J Hazard Mater,2013,262:853-861.
    [16]Appukuttan D,Rao A S,Apte S K.Engineering of deinococcus radiodurans R1for bioprecipitation of uranium from dilute nuclear waste[J].Appl Environ Microbiol,2006,72(12):7873-7878.
    [17]范黎峰,谢水波,刘迎九,等.大肠杆菌配合植酸对铀的吸附[J].环境工程学报,2016,10(8):4167-4171.
    [18]邓钦文,王永东,吕俊文,等.大肠杆菌JM109对废水中铀U(Ⅵ)的吸附实验研究[J].南华大学学报(自然科学版),2014,28(1):29-33.
    [19]王晓彧,郑新艳,沈杨皓,等.酵母菌对低浓度铀的吸附机理及动力学研究[J].环境科学学报,2017,37(1):169-177.
    [20]张伟,董发勤,覃贻琳,等.灭活酿酒酵母菌对U(Ⅵ)的吸附行为及减量化研究[J].功能材料,2015,46(23):23064-23070.
    [21]刘杰安,冯孝贵.几个常用地球化学模拟软件的比较[J].核化学与放射化学,2011,33(1):32-41.
    [22]Gok C,Aytas S.Bisorption of uranium(Ⅵ)from aqueous solution using calcium alginate beads[J].J Hazard Mater,2009,168:369-375.
    [23]沈萍.微生物学[M].北京:高等教育出版社,2000:39,63.
    [24]孙翠凤,刘芬菊,汪涛.耐辐射球菌Deinococcus radiodurans辐射抗性的研究进展[J].辐射研究与辐射工艺学报,2002,20(3):161-165.
    [25]赵清,舒为群.耐辐射球菌抗辐射机制研究进展及其环境修复应用前景[J].应用与环境生物学报,2008,14(4):578-584.
    [26]王金辉,周正富,张维,等.超强辐射抗性微生物:耐辐射异常球菌[J].生物技术进展,2013,3(2):90-95.
    [27]江巫栋.生物聚合物波谱学导论[M].北京:科学出版社,1983:159.
    [28]Li X L,Ding C C,Liao J L,et al.Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3[J].J Environ Sci,2016,41:162-171.
    [29]Kazy S K,D'Souza S F,Sar P.Uranium and thorium sequestration by a Pseudomonas sp.:mechanism and chemical characterization[J].J Hazard Mater,2009,163:65-72.
    [30]沈得言.红外光谱法在高分子研究中的应用[M].北京:科学出版社,1982:86.
    [31]卢涌泉,邓振华.实用红外光谱分析[M].北京:电子工业出版社,1989:21.
    [32]聂小琴.少根紫萍与锕系元素(U/Pu/Am)相互作用及机理研究[D].成都:四川大学,2014:123.
    [33]Sarada B,Prasad M K,Kumar K K,et al.Potential use of Caulerpafastigiata biomass for removal of lead:kinetics,isotherms,thermodynamic,and characterization studies[J].Environ Sci Pollut Res,2014,21(2):1314-1325.
    [34]代群威,董发勤,伍晓利,等.γ辐照下土壤分离菌对Sr2+吸附特性及其FTIR分析[J].光谱学与光谱分析,2012,32(12):3232-3237.
    [35]Qiu L,Feng J D,Dai Y D,et al.Biosorption of strontium ion by irradiated Saccharomyces cerevisiae under culture conditions[J].J Environ Radioact,2017,172:52-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700