四种杀菌剂对烟草灰霉病菌的毒力及对烟草灰霉病的抑制作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Toxicity of four fungicides against fungus Botrytis cinerea in tobacco and their inhibition effects against tobacco gray mold
  • 作者:汪汉成 ; 李丽翠 ; 张之矾 ; 周浩 ; 蔡刘体 ; 余知和
  • 英文作者:Wang Hancheng;Li Licui;Zhang Zhifan;Zhou Hao;Cai Liuti;Yu Zhihe;Guizhou Academy of Tobacco Science;College of Life Sciences,Yangtze University;Zheng'an County Tobacco Branch Company,Zunyi Tobacco Company of Guizhou Province;
  • 关键词:烟草灰霉病 ; 灰葡萄孢菌 ; 杀菌剂 ; 菌丝生长 ; 生物活性
  • 英文关键词:tobacco gray mold;;Botrytis cinerea;;fungicide;;mycelial growth;;bioactivity
  • 中文刊名:ZWBF
  • 英文刊名:Journal of Plant Protection
  • 机构:贵州省烟草科学研究院;长江大学生命科学学院;贵州省遵义市烟草公司正安县分公司;
  • 出版日期:2019-04-15
  • 出版单位:植物保护学报
  • 年:2019
  • 期:v.46
  • 基金:国家自然科学基金(31501679);; 贵州省科技厅优秀青年人才培养计划(黔科合平台人才[2017]5619);; 中国烟草总公司贵州省烟草公司科技项目(201714)
  • 语种:中文;
  • 页:ZWBF201902016
  • 页数:8
  • CN:02
  • ISSN:11-1983/S
  • 分类号:124-131
摘要
为筛选防治烟草灰霉病的有效药剂,采用菌丝生长速率法和孢子萌发法测定氟啶胺、咪鲜胺、苯醚甲环唑及代森锰锌4种杀菌剂对烟草灰霉病菌Botrytis cinerea的毒力,同时通过离体叶片评价这4种杀菌剂对烟草灰霉病的保护和治疗作用。结果表明,氟啶胺和咪鲜胺对菌丝生长活性抑制最强,有效抑制中浓度ECjs50平均值分别为0.02、0.03 mg/L,苯醚甲环唑次之,代森锰锌最弱,EC_(js50)平均值分别为0.39、7.86 mg/L;氟啶胺对孢子萌发活性抑制最强,代森锰锌次之,有效抑制中浓度EC_(mf50)平均值分别为0.06、0.16 mg/L,咪鲜胺和苯醚甲环唑最弱,ECmf50平均值均大于25.00 mg/L。离体试验表明,氟啶胺对烟草灰霉病保护作用最强,浓度为50 mg/L时,防治效果为100.00%,咪鲜胺和苯醚甲环唑次之,防治效果分别为88.62%和76.46%,代森锰锌最弱,浓度为1 000 mg/L时防治效果仅为75.81%;氟啶胺对烟草灰霉病治疗作用最强,浓度为100 mg/L时的防治效果为85.75%,咪鲜胺和苯醚甲环唑次之,浓度为200 mg/L时的防治效果分别为85.47%和76.48%,代森锰锌最弱,浓度为1 000 mg/L时防治效果为70.24%。表明氟啶胺和咪鲜胺更适合烟草灰霉病的防治。
        In order to screen effective fungicides for the control of tobacco gray mold, the toxicity of four fungicides, fluazinam, prochloraz, difenoconazole and mancozeb, against fungus Botrytis cinerea from tobacco were tested in vitro using both mycelial growth and conidial germination methods, and the protective and curative effects of these fungicides against tobacco gray mold were also detected in vivo on detached tobacco leaves. The results showed that fluazinam and prochloraz exhibited the highest inhibition against mycelial growth of B. cinerea, with average EC_(js50)(median effect concentration) values of 0.02 and 0.03 mg/L, respectively, followed by difenoconazole(0.39 mg/L); mancozeb showed poor inhibition(7.86 mg/L). Fluazinam exhibited highest inhibition against conidial germination of the pathogen, with an average EC_(mf50) value of 0.06 mg/L, followed by mancozeb(0.16 mg/L), while prochloraz and difenoconazole showed the poorest inhibition(both>25.00 mg/L). The strongest protective activity was observed in fluazinam(100.00% at 50 mg/L), followed by prochloraz(88.62%) and difenoconazole(76.46%), while the lowest activity was detected in mancozeb(75.81% at 1 000 mg/L). The strongest curative activity was detected in fluazinam(85.75% at 100 mg/L), followed by prochloraz(85.47% at 200 mg/L) and difenoconazole(76.48% at 200 mg/L), while the lowest activity was observed in mancozeb(70.24% at 1 000 mg/L). The results showed that fluazinam and prochloraz were more suitable for the control of tobacco gray mold.
引文
Atmaca N,Arikan S,Essiz D,Kalender H,Simsek O,Bilmen FS,Kabakci R.2018.Effects of mancozeb,metalaxyl and tebuconazole on steroid production by bovine luteal cells in vitro.Environmental Toxicology and Pharmacology,59:114-118
    Choquer M,Fournier E,Kunz C,Levis C,Pradier JM,Simon A,Viaud M.2007.Botrytis cinerea virulence factors:new insights into a necrotrophic and polyphageous pathogen.FEMS Microbiology Letters,277(1):1-10
    Cooke BK,Pappas AC,Jordan VWL,Western NM.2010.Translocation of benomyl,prochloraz and procymidone in relation to control of Botrytis cinerea in strawberries.Pest Management Science,10(6):467-472
    Dong FS,Li J,Chankvetadze B,Cheng YP,Xu J,Liu XG,Li YB,Chen X,Bertucci C,Tedesco D,et al.2013.Chiral triazole fungicide difenoconazole:absolute stereochemistry,stereoselective bioactivity,aquatic toxicity,and environmental behavior in vegetables and soil.Environmental Science&Technology,47(7):3386-3394
    Elmer PAG,Michailides TJ.2007.Epidemiology of Botrytis cinerea in orchard and vine crops.//Elad Y,Williamson B,Tudzynski P,Delen N.Botrytis:biology,pathology and control.Springer,pp.243-272
    Fernández-Ortu?o D,Chen F,Schnabel G.2013.Resistance to cyprodinil and lack of fludioxonil resistance in Botrytis cinerea isolates from strawberry in North and South Carolina.Plant Disease,97(1):81-85
    Gong FY,Yang C,Jiang ZL,Wu DX,Liu YL.2008.The expression of tobacco grey mould in floating-seedling system and laboratory toxicity tests of eight fungicides to Botrytis cinerea.Acta Tabacaria Sinica,14(3):32-35(in Chinese)[宫飞燕,杨程,蒋自立,吴德喜,刘云龙.2008.烟草灰霉病在烟草漂浮育苗中的表现及8种杀菌剂对病菌的室内毒力测定.中国烟草学报,14(3):32-35]
    Kapteyn JC,Milling RJ,Simpson DJ,De Waard MA.2010.Inhibition of sterol biosynthesis in cell-free extracts of Botrytis cinerea by prochloraz and prochloarz analogues.Pest Management Science,40(4):313-319
    Keinath AP.2015.Baseline sensitivity of Didymella bryoniae to cyprodinil and fludioxonil and field efficacy of these fungicides against isolates resistant to pyraclostrobin and boscalid.Plant Disease,99(6):815-822
    Liang HJ,Di YL,Li JL,Zhu FX.2015.Baseline sensitivity and control efficacy of fluazinam against Sclerotinia sclerotiorum.European Journal of Plant Pathology,142(4):691-699
    Magarey RD,Emmett RW,Magarey PA,Franz PR.1993.Evaluation of control of grapevine anthracnose caused by Elsinoe ampelina by pre-infection fungicides.Australasian Plant Pathology,22(2):48-52
    Mao XW,Li JS,Chen YL,Song XS,Duan YB,Wang JX,Chen CJ,Zhou MG,Hou YP.2018.Resistance risk assessment for fluazinam in Sclerotinia sclerotiorum.Pesticide Biochemistry and Physiology,144:27-35
    Matheron ME,Porchas M.2000.Impact of azoxystrobin,dimethomorph,fluazinam,fosetyl-Al,and metalaxyl on growth,sporulation,and zoospore cyst germination of three Phytophthora spp.Plant Disease,84(4):454-458
    Nithyameenakshi S,Jeyaramraja PR,Manian S.2006.Investigations on phytotoxicity of two new fungicides,azoxystrobin and difenoconazole.American Journal of Plant Physiology,1(1):89-98
    Palmer C,Bonde MR,Nester SE,Revell JM,Luster DG.2015.Fungicide impact on in vitro germination of basidiospores of Puccinia horiana,the causal agent of chrysanthemum white rust.Plant Health Progress,16(2):73-76
    Pappas AC,Fisher DJ.1979.A comparison of the mechanisms of action of vinclozolin,procymidone,iprodione and prochloraza against Botrytis cinerea.Pest Management Science,10(3):239-246
    Roberts TR,Hutson DH,Jewess PJ,Lee PW,Nicholls PH,Plimmer JR.1999.Metabolic pathways of agrochemicals Part 2:insecticides and fungicides.Cambridge,UK:Royal Society of Chemistry
    Sahile S,Fininsa C,Sakhuja PK,Ahmed S.2008.Effect of mixed cropping and fungicides on chocolate spot(Botrytis fabae)of faba bean(Vicia faba)in Ethiopia.Crop Protection,27(2):275-282
    Sham A,Moustafa K,AI-Shamisi S,Alyan S,Iratni R,AbuQamar S.2017.Microarray analysis of Arabidopsis WRKY33 mutants in response to the necrotrophic fungus Botrytis cinerea.PLoSONE,12(2):e0172343
    Shao WY,Ren WC,Zhang Y,Hou YP,Duan YB,Wang JX,Zhou MG,Chen CJ.2015b.Baseline sensitivity of natural populations and characterization of resistant strains of Botrytis cinerea to fluazinam.Australasian Plant Pathology,44(4):375-383
    Shao WY,Zhang Y,Ren WC,Chen CJ.2015a.Physiological and biochemical characteristics of laboratory induced mutants of Botrytis cinerea with resistance to fluazinam.Pesticide Biochemistry and Physiology,117:19-23
    Slawecki RA,Ryan EP,Young DH.2002.Novel fungitoxicity assays for inhibition of germination associated adhesion of Botrytis cinerea and Puccinia recondita spores.Applied and Environmental Microbiology,68(2):597-601
    Song YY,Li LL,Li C,Lu ZB,Men XY,Chen FJ.2018.Evaluating the sensitivity and efficacy of fungicides with different modes of action against Botryosphaeria dothidea.Plant Disease,102(9):1785-1793
    Sun HY,Wang HC,Chen Y,Li HX,Chen CJ,Zhou MG.2010.Multiple resistance of Botrytis cinerea from vegetable crops to carbendazim,diethofencarb,procymidone,and pyrimethanil in China.Plant Disease,94(5):551-556
    Suzuki K,Sugimoto K,Hayashi H,Komyoji T.1995.Biological mode of action of fluazinam,a new fungicide,for Chinese cabbage clubroot.Japanese Journal of Phytopathology,61(4):395-398
    Vinggaard AM,Hass U,Dalgaard M,Andersen HR,BonefeldJ?rgensen E,Christiansen S,Laier P,Poulsen ME.2006.Prochlorza:an imidazole fungicide with multiple mechanisms of action.International Journal of Andrology,29:186-192
    Wang HC,Huang YF,Wang J,Chen XJ,Wei KS,Wang MS,Shang SH.2016a.Activities of azoxystrobin and difenoconazole against Alternaria alternata and their control efficacy.Crop Protection,90:54-58
    Wang HC,Li WH,Wang MS,Chen QY,Feng YG,Shi JX.2011.First report of Botrytis cinerea causing gray mold of tobacco in Guizhou Province of China.Plant Disease,95(5):612
    Wang HC,Sun HY,Ma JX,Stammler G,Zhou MG.2009b.Fungicide effectiveness during the various developmental stages of Peronophythora litchii in vitro.Journal of Phytopathology,157(7/8):407-412
    Wang HC,Sun HY,Stammler G,Ma JX,Zhou MG.2009c.Baseline and differential sensitivity of Perononphythora litchii(lychee downy blight)to three carboxylic acid amide fungicides.Plant Pathology,58(3):571-576
    Wang HC,Wang J,Li LC,Hsiang T,Wang MS,Shang SH,Yu ZH.2016b.Metabolic activities of five botryticides against Botrytis cinerea examined using the Biolog FF MicroPlate.Scientific Reports,6:31025
    Wang HC,Zhou H,Zhang ZF,Chen XJ,Cai LT,Yu ZH.2018.Induction and biological characters of laboratory mutants of Botrytis cinerea resistant to azoxystrobin.Acta Tabacaria Sinica,24(3):82-87(in Chinese)[汪汉成,周浩,张之矾,陈兴江,蔡刘体,余知和.2018.烟草灰霉病菌嘧菌酯抗药性突变菌株的诱导及其生物学习性分析.中国烟草学报,24(3):82-87]
    Wang HC,Zhou MG,Wang JX,Chen CJ,Li HX,Sun HY.2009a.Biological mode of action of dimethomorph on Pseudoperonospora cubensis and its systemic activity in cucumber.Agricultural Sciences in China,8(2):172-181
    Wang XK,Guo BB,Gao YY,Mu W,Liu F.2017.The toxicity of six triazole fungicides to Cladosporium fulvum and their safety and field efficacy in the control of tomato leaf mold.Journal of Plant Protection,44(4):671-678(in Chinese)[王晓坤,郭贝贝,高杨杨,慕卫,刘峰.2017.六种三唑类杀菌剂对番茄叶霉病菌的毒力及其安全性和田间防效评价.植物保护学报,44(4):671-678]
    Weber RWS,Wichura A.2013.Fungicide resistance of Botrytis cinerea on lettuce in northern Germany.Journal of Plant Disease and Protection,120(3):115-121
    Williamson B,Tudzynski B,Tudzynski P,van Kan AL.2007.Botrytis cinerea:the cause of grey mould disease.Molecular Plant Pathology,8(5):561-580
    Wu DX,Zhang XK,Wang J,Wang JX,Zhou MG,Chen CJ.2014.Baseline sensitivity of Botrytis cinerea and risk assessment of developing resistance to the novel fungicide Y5247.Australasian Plant Pathology,43(6):639-651
    Wu S,Zhang H,Zheng K,Meng B,Wang F,Cui Y,Zeng S,Zhang K,Hu D.2018.Simultaneous determination and method validation of difenoconazole,propiconazole and pyraclostrobin in pepper and soil by LC-MS/MS in field trial samples from three provinces,China.Biomedical Chromatography,32(2):e5052
    Zhang SY,Li L,Chen XL,Qi QQ,Lou HZ,Zhang CQ.2017.Identification of brown spot on fruit of Torreya grandis and screening of fungicides.Journal of Plant Protection,44(5):817-825(in Chinese)[张书亚,李玲,陈秀龙,戚钱钱,楼焕泽,张传清.2017.香榧果实褐斑病病原菌鉴定及防治药剂筛选.植物保护学报,44(5):817-825]
    Zhao JJ,Han XY,Zhang XF,Ma ZQ,Wang WQ.2010.The sensitivity of Botrytis cinerea to difenoconazole and cross resistance against diverse fungicides.Chinese Agricultural Science Bulletin,26(22):282-286(in Chinese)[赵建江,韩秀英,张小风,马志强,王文桥.2010.灰葡萄孢(Botrytis cinerea)对苯醚甲环唑的敏感性及其对不同杀菌剂的交互抗药性.中国农学通报,26(22):282-286]
    Zhao P,Cao L,Ma D,Zhou Z,Huang Q,Pan C.2018.Translocation,distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants.Nanoscale,10(4):1798-1806

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700